
GRADE
Business Modeling

SIMULATION GUIDE

GRADE
Business Modeling

SIMULATION GUIDE

Copyright � 1998 by INFOLOGISTIK GmbH.

All rights reserved.

No parts of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, without the express written permission of INFOLOGISTIK GmbH.

Information in this document is subject to change without notice.

Release 4.0.3, Revised May 1998.

Contents

Chapter 1 Introduction . 1
1.1 Why should a business model be simulated? . 1

Chapter 2 Making a business model valid for simulation 3
2.1 Business model example . 3

2.2 The main concern - adding stimulus . 8

2.3.1 Adding task duration . 13

2.3.2 Specifying decision details . 15

2.3.3 Checking performer definition correctness . 17

Chapter 3 Analyzing syntax . 19
3.1 How to start analysis . 19

3.2 Removing syntax errors - the first hints . 21

Chapter 4 How to simulate a model . 25
4.1 Starting the simulation . 25

4.2 Simulator control window . 27

4.3 Setting session parameters . 30

Chapter 5 Observing a Simulation session . 37
5.1 Execution by steps . 37

5.2 Execution in Run mode . 41

5.3 Animation of the model . 45

Chapter 6 Statistics in GRADE-BM . 49
6.1 What default statistics are available . 49

6.1.1 Statistics for tasks and transactions . 49

6.1.2 Statistics for events . 51
iii

•
•
•
•
•

iv

•
•
•
•
•

6.1.3 Statistics for performers . 52

6.2 How to start gathering statistics . 52

6.3 Reviewing the statistics . 54

6.3.1 Reviewing statistics in the Simulator . 54

6.3.2 Reviewing statistics via Trace browser . 57

6.4 A small statistical experiment . 61

6.5 User attributes in statistics . 69

6.6 Use of the trace for obtaining time dependent statistics 73

Chapter 7 Some hints on GRAPES-BM in simulation . 81
7.1 Building load generators . 81

7.1.1 More on using timers . 81

7.1.2 Using spontaneous events . 84

7.2 Model consistency issues . 85

7.2.1 Structure and event connection consistency 86

7.2.2 Consistency of properties between BP and TD diagrams 87

7.2.3 Consistency between ORG diagram and performer expressions in tasks

89

7.3 Transactions in simulation . 90

7.3.1 Common pitfalls related to merge conditions 90

7.3.2 Adapting transactions for statistics . 96

7.3.3 Aggregate processing and transactions . 101

7.4 Using simulation parameters (SP) table . 103

7.5 Using show boxes . 108

7.6 Data in user attributes and events . 110

7.6.1 General data-based “programming” in GRAPES-BM 110

7.6.2 Approaches for gathering additional statistics 111

7.7 Use of global variables . 115

7.7.1 When to use global variables . 115

7.7.2 Example of a typical use of global variables 116

7.7.3 Simulating models with global variables . 121

7.7.4 Modified example. Concurrency problems 123

7.7.5 Variables and statistics . 125

Chapter 8 Debugging and testing business models . 129
8.1 General techniques of debugging . 129

8.2 Inspect in details . 130

8.3 How to understand why a task does not start . 135

8.4 How to spot a transaction that got stuck . 136

8.5 Testing a model via statistics . 136

8.6 Use of trace in debugging and testing . 137

Chapter 9 Advanced topics in statistics gathering . 141
9.1 Warm-up period . 141

9.2 What are the costs of simulation . 143

References . 145

Index . 147
Contents v

•
•
•
•
•

vi

•
•
•
•
•

1

Chapter 1
Introduction

1.1 Why should a business model be simulated?

GRADE provides a number of ways of describing the static structure and processes of systems.
Simulation, for Business Models, also provides a way to evaluate its dynamic behavior or in
other words, how a model performs.

But why should you do this?

There may be any number of reasons for wanting to simulate a model, but the benefits are
usually the following:

• the model is validated via observing it in action. After the static structure and processes of a
model have been analyzed, simulation provides a better understanding of how the structure
and units behave as a system. This is especially important in complicated systems, where the
dynamic interaction between individual performers, or performer groupings is not clearly
understood or where unanticipated competition for resources occurs.

• quantitative information, in the form of statistics in tables or charts provides measurable,
quantifiable information that can be used for decision making.

• intelligent comparisons can be made between different solutions, whether comparing an “as
is” system with a “to be” system, performing “what if” analysis with various scenarios or
experimenting with radical re-engineering alternatives.

Model validation is relevant for any non-trivial business model with proper business processes
describing sequences of tasks. The designer of a model gains confidence in his model, when an
“independent expert” - the Simulator, confirms that the model behaves as intended. It is also
worth noting that animation of an simulatable business model is also a very good way to present
it to an audience, especially to top management of the enterprise as it presents problems in a
very straightforward manner.

The second level of usage - proper statistical simulation - requires more effort in order to obtain
plausible statistical results. Only the obvious numeric parameters need to be added to a well-
built business model in order to adapt it for proper statistical simulation. This makes the
GRAPES-BM language and GRADE Simulator a powerful tool in business process re-
engineering. Enterprise models built for understanding the current situation or proposed
1

•
•
•
•
•

2

•
•
•
•
•

modifications to it, can be easily extended to provide quantitative information as well. Realistic
task durations must be specified. Performer management - their number and availability periods
must also be defined adequately. Yet another point is the exact specification of decisions - either
on a probabilistic basis (decision percent) or on a deterministic (context sensitive or formula
driven) basis. This makes GRAPES-BM more applicable in evaluating business process re-
engineering solutions, than specialized simulation languages. Specialized simulation languages
and tools describe processes in programming terms, rather than business terms, making them
the sole province of dedicated “specialists” and largely inaccessible to other participants in the
re-engineering process.

Being able to intelligently weigh the merits of one solution to a business problem against
another is vital to making management decisions, where even small changes can produce huge
cost swings. Changes often include tradeoffs, changes in one area, such as improved delivery
time, might lead to increased costs in shipping. Looking at different alternatives and being able
to compare costs, cycle times, resource allocations and performer utilization in each alternative
can make the difference between ill chosen “improvements” and those changes that can
markedly improve an enterprise’s competitive position.

The given document provides sufficient information for all these levels of usage. Some
experience, as well as presentation skills, are required for presenting the results in a persuasive
manner. Information both on tuning the model itself and on the usage of the GRADE
Simulator is provided.

The sections 2 to 6 make the first walk through of the main features of simulation in GRADE.
All this is done on the basis of one example, with small extensions gradually added to it. The
remaining sections explain some topics of potential interest in greater detail.

It is assumed throughout this document that the reader is familiar with the BM Language Guide
[Part 1 at the very least], and examples from there are freely used here as well.

In this document the terms “simulate” and “execute” will be used interchangeably.

Some notational conventions are used in this document. Identifiers from examples are shown
in italics. So are window and page names in the Simulator tool. Menus/submenus are shown in
bold, separated by slash characters.

One other item. It is the intelligent user who, utilizing the GRADE tool set along with a
modicum of good common sense, provides innovative improvements in business systems.
Methods and systems do not produce innovation, people do.
Chapter 1

2

Chapter 2
Making a business model valid for
simulation

2.1 Business model example

In this and the following sections, one simple business model example will be used, namely the
unstructured office example from section 5 in the BM Language Guide [1](it is visible there in
Figures 5.4 to 5.11). Figure 2-1 reproduces the sole BP diagram from the model.
3

•
•
•
•
•

4

•
•
•
•
•

Figure 2-1: BP diagram of the Office

Register
Paper based

Regular

Forward_Immediately
Secretary

Archive_Answer
AND
Secretary

Coffee_Break
Secretary

Analyse_Query
Secretary

Forward_to_Chief
AND
Secretary

Assess_Query
Chief

Send_Question
AND
Secretary

Send_Answer
Secretary

Review_Not_Needed

Analyse_Review
AND
Chief

Answer_question
Reviewer

Review_Needed

Urgent

Register_Query
Secretary

more_QuestionsQuestions_clear

Find_reviewer
Chief

Prepare_Draft_Answer
OR
Chief

Type_Answer
AND
Secretary

Archive

Receive_Answer
Customer

Send_Query
Customer

QueryQuery

Question

Question

Query

Answer

Query

Query

Query

Answer

At_5_PM

Reviewer_Address

Review

Query

Query

Query

Query

Query_and_Review

Query

Query Draft_Answer

Copy_of_Answer
Chapter 2

Figure 2-2: ORG diagram of the Office

Figure 2-3: ET table of the Office (updated)

For the sake of completeness, the ORG diagram and ET table also are reproduced (Figure 2-2
and Figure 2-3).

TD diagrams are assumed to be generated automatically via GRADE editors. Note that in order
to make the ET syntactically correct, the definition of timer At_5_PM has been added here (the
only difference from Fig. 5.6 in the Language Guide Part 1).

This guide assumes a hands-on use of GRADE during its reading. To start, we strongly suggest
that you enter the described model via the appropriate GRADE editors (i.e. its ORG and BP
diagrams and ET table must be entered, and TD diagrams are generated automatically by
editors). And the assumption is made that the model is entered just as provided herein,
hopefully without any syntactical errors. It is recommended that you start with the ORG
diagram, then proceed to the BP and finish up with the ET diagram. You should try to use the
“picking” features in GRADE, so that when modeling in the BP diagram you are selecting
performers from the ORG diagram you entered in the previous step. The ET table will be filled
out automatically during the BP modeling process, with the exception of the time specification
for “At_5_PM”.

Office_and_Environment

Office

Reviewer

Customer

Office

Chief Secretary

Heater

PC

Answer Message

At_5_PM Timer TIME("*.*.* 17:00")

Copy_of_Answer Message

Draft_Answer Message

Query Message

Query_and_Review Message

Question Message

Review Message

Reviewer_Address Message

Event name: Category: Data type: Persistence interval: Transfer time: Description:
Making a business model valid for simulation 5

•
•
•
•
•

6

•
•
•
•
•

As the next step, we will try to simulate the model as a “black box”, without any modifications,
and see what happens. It is a series of simple activities, and from the first glance not requiring a
deep understanding of what actually happens.

The first activity is syntactic analysis, which is followed by model simulation. Just follow the
described instructions:

• Open the model tree window.

• Select the BM symbol of the model tree (named Office) as the current one.

• Select the menu item Tools/Analyze subtree. Now the syntactic analysis of the business
model starts, and a message box similar to that in Figure 2-4 appears on the screen.

Figure 2-4: Analyzer message box

The box displays the number of diagrams analyzed. When the process is completed, the
following box appears.

Figure 2-5: Analyzer message box at completion

We hope that you indeed have entered the model correctly and the box in Figure 2-5 does
appear (but if it does not, see section 3).

Press OK. The small circles alongside the diagram names in the model tree should turn green.

Try to simulate the model. Select the menu item BM tools/Simulate. First, preparation occurs
with the following message text at the end
Chapter 2

Figure 2-6: Preparation message box

• Press OK, then the simulator control window appears.

Figure 2-7: Simulator control window

• Select the button Step in this window. It is intended to perform one task instance activation
at a time in a model.

However, no task instance is activated in this case - the number of active tasks field in the
window remains at 0, only the current time field advances. This means that nothing “happened”
during the simulation.

Consequently, the model does not behave as expected, though it is completely valid from the
modeler’s point of view.
Making a business model valid for simulation 7

•
•
•
•
•

8

•
•
•
•
•

• Press the Exit button.

2.2 The main concern - adding stimulus

Now look closer at the model. The activities related to one “Query” start with an external task:

Figure 2-8: Starting new query

It is OK for the modeler to assume that an external task starts sometimes automatically (not
knowing exactly when). However, the GRADE Simulator cannot guess these time moments
itself. Therefore, one principle used in GRAPES-BM simulation is

External tasks never start automatically, without an explicit stimulus.

Consequently, if you want an external task to start, add a timer to it.

In the example, let us add the following timer to the task Send_Query.

Register
Paper based

Regular

Forward_Immediately
Secretary

Analyse_Query
Secretary

Forward_to_Chief
AND
Secretary

Assess_Query
Chief

Urgent

Register_Query
Secretary

Send_Query
Customer

QueryQuery

Query

Query

At_5_PM

Query

Query
Chapter 2

Figure 2-9: Timer Regularly added

For the sake of simplicity, let us define Regularly as shown in the corresponding entry in the ET
table in Figure 2-10

Figure 2-10: Updated ET

Register
Paper based

Regular Urgent

Forward_Immediately
Secretary

Send_Query
Customer

Register_Query
Secretary

Analyse_Query
Secretary

Forward_to_Chief
AND
Secretary

Assess_Query
Chief

Query

Query

Query

Query

Query

Query

At_5_PM

Regularly

Answer Message

At_5_PM Timer TIME("*.*.* 17:00")

Copy_of_Answer Message

Draft_Answer Message

Query Message

Query_and_Review Message

Question Message

Regularly Timer REPETITION("1h:30m")

Review Message

Reviewer_Address Message

Event name: Category: Data type: Persistence interval: Transfer time: Description:
Making a business model valid for simulation 9

•
•
•
•
•

10

•
•
•
•
•

This means that a new query appears every one and a half hours, i.e. exactly at these time
moments the task Send_Query is triggered. Certainly, a more realistic way would be to use
random functions in timer definitions, e.g. to define Regularly as

Repetition(Exponential("1h:30m")).

This definition would mean that the interval between consecutive starts of the task Send_Query
has the mean value one and a half hour, and is exponentially distributed. Note that the second
(more realistic) definition will be used later in our statistical experiments.

Usually, Repetition timers are used to in such situations, however, a Time timer may be used as
well to specify a specific time rather than an interval.

An external task with a timer associated to it is called a load generator in simulation practice.
Suggestions for more complicated load generators and also some shorthand notations are given
in section 7.1.

Now add the timer Regularly to the ET of the model if you have not already done so. Note that
the circles next to the diagrams in the model tree have become gray. The BP diagram now should
look like this:
Chapter 2

Figure 2-11: Updated BP diagram

Save the modified BP diagrams and re-analyze the whole model (Tools/Analyze subtree with
BM selected as the current element in the model tree). There shouldn't be any syntactic errors
in the model (certainly, if you haven't made errors in the new timer definition).

Register
Paper based

Regular

Forward_Immediately
Secretary

Analyse_Query
Secretary

Forward_to_Chief
AND
Secretary

Assess_Query
Chief

Send_Question
AND
Secretary

Send_Answer
Secretary

Review_Not_Needed Review_Needed

Urgent

Register_Query
Secretary

more_QuestionsQuestions_clear

Archive

Send_Query
Customer

Find_reviewer
Chief

Analyse_Review
AND
Chief

Answer_question
Reviewer

Type_Answer
AND
Secretary

Archive_Answer
AND
Secretary

Receive_Answer
Customer

Prepare_Draft_Answer
OR
Chief

Coffee_Break
Secretary

QueryQuery

Question

Question

Query

Query

Query

Query

At_5_PM

Reviewer_Address

Review

Query

Query

Query

Query

Copy_of_Answer

Regularly

Query_and_Review

Query Draft_Answer

Answer

Answer

Query
Making a business model valid for simulation 11

•
•
•
•
•

12

•
•
•
•
•

Now, start once more the simulation:

• select BM tools/Simulate,

• press OK at the Preparation message box,

• press Step in the Simulator control window.

Now you see that the model is able to perform one step

Figure 2-12: Simulation of one step

The status bar of the simulation window says that an instance of task Send_Query has started.
Press the Step once more, and you will see that the task Register_Query has started. Now press
the Run button and see how the number of active tasks, number of active transactions and
model time fields change. All this shows that the model actually “works”. Press Exit to end the
simulation.
Chapter 2

2.3 More necessary improvements to the model

Though the model really simulates now, its behavior may still be not very realistic. A few
additional improvements to the model should be performed.

2.3.1 Adding task duration

Though task durations may be very significant for modeling some systems, they are often
neglected during the modeling stage. Task durations are very essential for normal model
execution, since simulation in GRAPES-BM is based only upon time advancement. If no task
duration is specified, a zero value is assumed during execution. In effect, all activities in the
model occur only when timers advance the model time. In our model you can observe that
everything happens either every one and a half hour, or at 5 PM.
Making a business model valid for simulation 13

•
•
•
•
•

14

•
•
•
•
•

Add task durations (displayed below the performer name) to the appropriate tasks in the BP
diagram according to the following example:

Figure 2-13: BP diagram with durations

Register
Paper based

Send_Query
Customer

Forward_Immediately
Secretary

Send_Question
AND
Secretary
"3m"

Type_Answer
AND
Secretary
"10m"

Register_Query
Secretary
"3m"

Forward_to_Chief
AND
Secretary
"1m"

Assess_Query
Chief
"5m"

Analyse_Query
Secretary
"4m"

Analyse_Review
AND
Chief
"5m"

Answer_question
Reviewer
"1h"

Find_reviewer
Chief
"10m"

Send_Answer
Secretary
"3m"

Archive

Archive_Answer
AND
Secretary
"1m"

Coffee_Break
Secretary
"5m"

Receive_Answer
Customer

Prepare_Draft_Answer
OR
Chief
"10m"

Regular Urgent

Review_Not_Needed Review_Needed

Questions_clear more_Questions

Query

Reviewer_AddressQuestion

Question

Query

Query

Regularly

At_5_PM

Query

Query

Query

Query

Query

Query

Review

Query

Copy_of_Answer

Answer

Answer

Query Draft_Answer

Query_and_Review

Query
Chapter 2

The durations can be entered via the BP diagram by editing each task and adding information
to its Duration section. The corresponding TD diagrams are updated automatically, when you
save the BP diagram.

2.3.2 Specifying decision details

It is typical when simply modeling, that most of the decision symbols in a BP contain only their
names, which are sufficient for the reader to understand the business logic. In cases where the
decisions are not formally specified, during execution each of the branches is used with equal
probability (equal to 100/n%, where n is the number of branches). The EXCLUSIVE mode is
used by default, i.e. the process only proceeds down one of the n branches.

However, such a default distribution may lead to unexpected results during execution.
Therefore it is recommended to add explicit probability specifications to decisions, or in more
advanced cases decisions based on formulas. Remember, that the default mode here again is
EXCLUSIVE, i.e. only one branch is taken.

The next figure shows what probabilities should be assigned to each decision in the example. In
two cases the decision retains the default fifty-fifty distribution (but it is specified explicitly).
Making a business model valid for simulation 15

•
•
•
•
•

16

•
•
•
•
•

Figure 2-14: BP diagram with decisions completed

Enter the probabilities in the BP diagram in each decision symbol, and the TDs again will be
updated automatically.

Register
Paper based

Send_Query
Customer

Forward_Immediately
Secretary

Send_Question
AND
Secretary
"3m"

Urgent
10 % EXCLUSIVE

Regular
90 % EXCLUSIVE

Type_Answer
AND
Secretary
"10m"

Register_Query
Secretary
"3m"

Forward_to_Chief
AND
Secretary
"1m"

Assess_Query
Chief
"5m"

Analyse_Query
Secretary
"4m"

Review_Not_Needed
50 % EXCLUSIVE

Review_Needed
50 % EXCLUSIVE

Analyse_Review
AND
Chief
"5m"

Answer_question
Reviewer
"1h"

more_Questions
50 % EXCLUSIVE

Questions_clear
50 % EXCLUSIVE

Find_reviewer
Chief
"10m"

Send_Answer
Secretary
"3m"

Archive

Archive_Answer
AND
Secretary
"1m"

Coffee_Break
Secretary
"5m"

Receive_Answer
Customer

Prepare_Draft_Answer
OR
Chief
"10m"

Query

Reviewer_AddressQuestion

Question

Query

Query

Regularly

At_5_PM

Query

Query

Query

Query

Query

Query

Review

Query

Copy_of_Answer

Answer

Answer

Query Draft_Answer

Query_and_Review

Query
Chapter 2

2.3.3 Checking performer definition correctness

In the original example, performers in ORG and references to them in performer expressions
are defined in the simplest, most direct way. There are no availability specifications in the ORG
diagram. Only one instance of each performer is requested for a task. In such cases, performer
unavailability cannot cause problems in model simulation.

To make the model a bit more realistic, let us specify differing availabilities for the main
performers of the model. So, let us assume that the secretary’s working hours are from 9.00 to
18.00 and that of the chief is from 10.00 to 17.00. The ORG diagram now is the following

Figure 2-15: Updated ORG diagram

Another addition to the ORG is that we should define the cost per hour attribute for some of
the performers:

• 5 units for the chief,

• 2.5 units for the secretary,

• 4 units for the reviewer.

These units mean some form of currency, for example, British pounds, but the actual label for
the unit is not included. Costs in GRAPES are numbers without dimensions.

If performer availability is specified, then it is also possible to inadvertently introduce logical
flaws such as incompatibilities between performer availability and specific timers in a model.
This often leads to a model stopping in effect, at a certain point. Let us assume for a moment
that the secretary in the ORG diagram has a different availability “*.*.* (08:00-16:30)”. Then
the task Forward_to_Chief, which is triggered by the timer At_5_PM exactly at 17:00 each day
(assuming that there are queries waiting), would never start. Then the queries would queue up
before that task forever.

Office

Chief
Availability : "*.*.* (10:00-17:00)"
Cost per hour : 5

Secretary
Availability : "*.*.* (09:00-18:00)"
Cost per hour : 2.5

Heater

PC

Office and Environment

Office

Reviewer
Cost per hour : 4

Customer
Making a business model valid for simulation 17

•
•
•
•
•

18

•
•
•
•
•

To avoid such flaws in your model, each timer-triggered task should be checked against its
performer’s availability, and one of the definitions updated accordingly, if an incompatibility is
found.

The other problem may be that too many performers are required by a task. If we had required
<2> Secretary for the task Forward_to_Chief, it wouldn't start either. There is only one Secretary
available in the ORG diagram.

There may be other performer and timer related peculiarities in a model, but these do not
prevent the model from simulating, but will produce erratic behavior. We will highlight some
of them during the statistical exploration of the model in section 6.5.

Remark. The potential problems considered in this section are of purely semantic nature,
therefore no syntax analysis can help to locate them.

When a model has been upgraded according to the instructions in section 2.2 and 2.3, it is very
probable that it will simulate in general. Certainly, its behavior may be inappropriate or
unrepresentative, but that is simply another question of removing logical errors in the model or
fine-tuning its parameters.

The recommendations of sections 2.2 and 2.3 are sufficient for making simple business models
valid for simulation. More specific recommendations concerning other language elements can
be found in section 7.
Chapter 2

3

Chapter 3
Analyzing syntax

3.1 How to start analysis

You may think that every model you have built via GRADE editors is completely valid. But in
reality it may not be so. Therefore the first operation after the actual construction of the model
must be syntactical analysis. This section covers the syntactical analysis in some detail. To
perform the analysis of a complete model, open the model tree window, select the BM symbol
of the model as the current one and select the menu item Tools/Analyze subtree.

The analysis of the whole model starts, and a message box similar to that in Figure 3-1 appears:

Figure 3-1: Analyzer message box

The box displays the number of diagrams currently analyzed. First the ET and ORG diagrams
are analyzed, then all TD diagrams starting from the uppermost, and the last ones analyzed are
BP diagrams. When the analysis is complete, the box in Figure 3-2 hopefully appears.
19

•
•
•
•
•

20

•
•
•
•
•

Figure 3-2: Analyzer message box at completion

This is the best outcome which can occur - everything is OK from a syntactical point of view.
When you press the OK button all the small circles beside the diagram boxes in the model tree
change their color from gray to green.

An additional model validation is the consistency check. This feature checks the consistency
between BP refinement levels. It should be applied if there is more than one BP level. To
perform it, select BM Tools/Check consistency/All BPs. As a result, all relevant pairs of BPs
(i.e. all pairs parent-child) are checked for the consistency of event links via referenced tasks.

If everything is OK among the inter-level links, all BP diagrams retain their green colored
circles. Now the model is ready for simulation.

However, another outcome may also appear as the result of analysis.

Figure 3-3: Message box with error

This means that there are some syntactic errors present (1 in this case), and, when you press OK,
some of the colored circles in the model tree become red (instead of green). Very often, one
modeling error will produce two or even three error messages, which can all be resolved by fixing
the one source. The diagrams marked red contain errors, and often there may be more than one
error per diagram.

To sum up, the small circle (called the status indicator) beside the diagram in the model tree
may have the following colors:

• white - diagram is empty,

• gray - diagram has not been analyzed,
Chapter 3

• green - diagram is analyzed and correct,

• red - diagram is analyzed and contains errors,

• yellow - diagram is analyzed and contains warnings.

For a model to be ready for execution, it must be analyzed and contain no errors, i.e. its diagram
status indicators must be green or white. Warnings, i.e. yellow circles may be present. Warnings
are non-fatal errors which do not prevent the simulation of a model, but may produce
unexpected results.

Messages from the consistency check affect the status indicators in the same way as the basic
analysis.

For convenience, sometimes instead of saying “the diagram has red status indicator” we say
simply “the diagram is red”.

3.2 Removing syntax errors - the first hints

Since no diagram in a model being prepared for simulation may be red, the causes of errors must
be found and corrected.

To correct an error in a red diagram, open it first. The symbol or line with whom the error is
associated is marked in green, and the text in error is rounded by a green frame. The editor
automatically selects one of the objects with an error as the current one, when a red diagram is
opened. The status bar at the bottom of the window displays the error message text.
Analyzing syntax 21

•
•
•
•
•

22

•
•
•
•
•

Example:

Figure 3-4: BP diagram with error message

If there are more errors, or more messages for one error, you can view the next one by clicking
on the status bar. The symbol to which the message applies is automatically highlighted by the
editor.

In the given example, the cause of the error most probably is some improper manual
modification of the TD diagram for task C. To remove this error, you have to press the menu
item Edit/This BP�TDs, with the BP editor open on the diagram synterr. Then the TD of task
C is updated so that it is consistent with its occurrence in the diagram synterr.

The description of some typical errors in business modeling and hints for removing them is
given in section 7. But in any case, look carefully to the diagram element in error and try to
understand why it has deviated from the allowed syntax.
Chapter 3

When one or more errors are corrected and the corresponding diagram is saved, the status
indicator of the given diagram changes its color back from red to gray. In addition, the colors
for some other diagrams dependent on this given one, may change from green to gray. In
particular, any modifications to the ORG diagram or ET table changes all green TD and BP
diagrams in the model to gray (but the red ones remain red).

So, the best way to proceed after a modification is to make the BM symbol in the model current,
and select once more Tools/Analyze subtree.

Only the gray and red diagrams in the model are then analyzed once more.

You may select also any diagram as the current one and press Tools/Analyze all diagrams. The
same diagrams will be analyzed.

If you are not sure about your modification, you can reanalyze just one diagram by making it
current and pressing Tools/Analyze current diagram. It may happen that necessary
“companions” will also be analyzed.

You can use also the pop-up menu to start analysis.
Analyzing syntax 23

•
•
•
•
•

24

•
•
•
•
•

Chapter 3

4

Chapter 4
How to simulate a model

So far the model simulation (execution) has been a sort of “black box”. This section concentrates
on the topic of how to start the simulation and control it in typical cases.

4.1 Starting the simulation

First, the model must be analyzed and contain no diagrams with errors. To start simulating a
business model, select any diagram in it as the current one, and select the menu item BM
tools/Simulate.

Actually then the model preparation starts displaying the following message box on screen

Figure 4-1: Preparation message box

This message box shows which of the model diagrams is currently being processed for
simulation. The preparation concludes with some additional model validity checks, the result
of which is reported in the message box. Usually the report is
25

•
•
•
•
•

26

•
•
•
•
•

Figure 4-2: Preparation completion message box

But there may also be warnings and even errors detected during the check:

Figure 4-3: Preparation completed with errors

Errors most probably result from missing or improperly connected timers. Only at this stage the
absence of a valid timer is spotted. The problems must be removed before proceeding with the
simulation exercise. Warnings, as a rule, are invoked by inappropriate event arrow connections
(there are inconsistencies between TDs and BPs or between BP levels). Warnings don't prevent
you from starting the simulation, but may point to inappropriate constructions which may lead
to erratic behavior of the model. This check is the most thorough check and may reveal
problems not spotted even during the global consistency check.

If there are no preparation messages you can accept the results by pressing OK button. Then the
Simulator control window appears.

If there are only warnings, it is better to press OK and then either start the simulation (if you
already know that the warnings are inconsequential) or exit the Simulator and examine the
yellow diagrams via the GRADE editors (if the cause of the warnings is unknown).

If there are errors, only the Cancel button is available, and you have to look for and resolve the
causes.

If you start the Simulator repeatedly for an unmodified model, no preparation occurs, only the
data necessary for the Simulator is loaded.
Chapter 4

4.2 Simulator control window

After the end of the preparation or load, the control window of the Simulator appears in the
following form:

Figure 4-4: Simulator control window after the Simulator start

In order to understand the details of the Simulator window, some concepts must be explained
at first.

Any model execution is called a simulation session. A session may be performed with user
interaction or completely automatically. The session length can be defined by the user
(sometimes it is limited by the nature of the business model). In the automatic mode (which is
called also the run mode) the session length is the natural end of the model execution.

In the interactive mode the actual length of session is determined by the user. There may be
various levels of interactivity. One such level is execution by steps.

Session behavior is determined by its parameters. In the simplest cases, the default values of
parameters will be sufficient. Parameter values may be modified via the Options menu items or
the corresponding buttons. Some parameters, e.g., session length, may be set only before the
session starts, while others may be modified at any moment during the session.
How to simulate a model 27

•
•
•
•
•

28

•
•
•
•
•

The simulation session is executed in its own model time. The model time has nothing
common with the clock time of the computer on which the model runs. Model time
advancement is determined solely by the properties of the model. All model activities are
associated with individual points in model time. Model time just “jumps” from one such point
to the next one, where something is to be done, and the interval in between is skipped. Time-
based session control is also related to the model time.

The tool bar contains buttons for the following main activities to be performed by the
Simulator:

Step - to execute one elementary activity (one step) in the model. By default, this activity means
starting one task instance. However, the user can define in the Options box, what does one step
actually mean. To execute the next step, press the button once more. Execution in steps is one
of the ways to execute a model interactively.

Run - to start the simulation session in the automatic mode. The execution may be interrupted,
and the same button is used to resume the execution.

Pause - to temporarily stop or suspend the execution immediately after the current elementary
activity. Now some intermediate results may be observed. After that the execution may be
resumed, either by steps, or in the run mode.

Reset - to reset the simulation session to its initial status. Both the model’s dynamic contents
and statistical data are reset to their initial values. Reset must be used before starting the session
once more. If you have set the values for some basic session parameters incorrectly, you must
reset the session, modify the parameters, and then start it once more.

Inspect Variables (IV), Inspect Tasks (IT), Inspect Performers (IP), Inspect SP parameters
(IS) - to observe the current model status with the desired level of detail. Statistical data may
also be viewed this way. You can use the buttons only when there is a pause or break of some
kind in the simulation. The full capabilities of inspect are used for model debugging (see section
8), but its basic features are of great value just for better understanding a model’s behavior and
for observing statistics.

Options button group (OI, OB, OS, OT, OG, OM) - opens the corresponding page of the
Options dialog box for setting session parameters. Frequently OI is the first button selected
before the actual start of the session. The main parameters will be described in the next section.

Tools button group (TA, TB, TS)- is used to invoke the companion tools - Animator and Trace
Browser from the Simulator. Before invoking either of them, some preparatory actions must be
performed. The usage of these tools is described in 5.3 and 6.3.2 respectively.

Exit (EX) - to close the Simulator.
Chapter 4

All the above mentioned actions are available also via the corresponding menu items (from Step
to Exit).

When the simulation session is in progress, the Simulator window contains more elements than
initially shown

Figure 4-5: Elements of the Simulator control window

The additional fields are just informative, informing the user of the progress of the exercise.
These fields include:

• the current model time,

• number of currently active task instances,

• time till the end of session.

• number of active transaction task instances,

The status bar contains:

• the model time (when the model is running),

• the cause of a pause or break (when the model is stopped),

In step mode, the status bar contains a description of the step just performed.
How to simulate a model 29

•
•
•
•
•

30

•
•
•
•
•

The user can include some more fields in the Simulator window by setting the appropriate
options in the session parameters.

4.3 Setting session parameters

When you press one of the Options group buttons (OI, OB, OS, OT, OG, OM) or select one
of the subitems of the Options menu item, the Options dialog box appears, with the
corresponding page on top. Through this dialog box all the session parameters are set. All
parameters have default values, so for the simplest simulation session either in run mode, or in
step mode you don't need to open this box. However, for typical Simulator use some parameters
must be set.

The Options dialog box contains six pages:

• Initials,

• Breakpoints,

• Statistics,

• Trace,

• Gaugeboard,

• Miscellaneous.

The Options box opens with the selected page on top. You can navigate to any other page via
page tabs.

The parameters contained in Initials, Statistics and Trace pages (except one item) may be set only
before the session start (or after a Reset). Other parameters may be modified during the session.

This section describes the most frequently used parameters, the others will be described later.

The Initials page is used to set the start and the end of the session (see Fig 4.6).
Chapter 4

Figure 4-6: Initials page of Options box

The Session start time means the starting time of the model. By default, it is set equal to the
current computer clock time. Frequently, the start time value is irrelevant for the execution.
However, sometimes some specific value is required (e.g., there are timers in the model related
to some specific date, or, due to performer availability some specific start hour is desirable). To
set the start time explicitly, press the Edit button beside it. The following time definition box
appears
How to simulate a model 31

•
•
•
•
•

32

•
•
•
•
•

Figure 4-7: Time definition box

Set the necessary values (either by direct entry in the appropriate fields, or via controls),
then press OK.

The Warm up period has special meaning for statistics gathering and will be described in section
9.1

The End of session criterion defines the session length. The default is 1000 days of model time.
If you plan to end the session manually, make sure that the length is sufficient, i.e. the default
value must be changed if the planned session lasts more than 1000 days of model time.

If the session is to be ended automatically, the exact length must be set. Select one of the radio
buttons:

• After (end after the specified model time interval),

• At (end at an exact model time value),

• When event (end after the specified event has been enqueued the specified number of times).
Chapter 4

For the first two options, press the Edit button, and either the time definition box (see Figure 4-
7), or a similar duration definition box appears. Set the value and press OK.

The third option prompts with the available event names and a field to enter one number value.

Another useful option in this page is the Load and Save option for session parameters. When
you have created a set of settings in the Options box, you can save it for repeated use. After setting
all of the pages of the box, return to this page and press the Save button. You are prompted for
the saved parameter set name, enter it and press OK (note that the name should contain
underscores rather than blank spaces between names). For the repeated use in another session,
just enter Options, press Load and select the desired name. Unnecessary parameter sets may be
deleted with Delete. Parameter sets are stored inside the repository, so they are preserved when
the model repository is copied. Old parameter sets may become invalid, if you have added or
deleted events in the model.

The Breakpoints page (see Figure 4-8 and Figure 4-9) allows you to define one or more
breakpoints in automatic model execution, i.e. in the run mode. When such a breakpoint is
reached, you can investigate the current status of the model and then either continue the run
(till the next breakpoint), continue the execution by steps or end the session altogether. Though
the main use of breakpoints is for model debugging, sometimes they are useful for regular
observation of model behavior (e.g., inspecting the model every 10 days of model time).

Figure 4-8: Breakpoints page (task subpage)
How to simulate a model 33

•
•
•
•
•

34

•
•
•
•
•

Figure 4-9: Breakpoints page (event/timer subpage)

Breakpoints can be set:

• At a specific model time,

• After Every specified model time interval,

• When specified task instances have started the specified number of times,

• When specified task instances have ended the specified number of times,

• When specified event instances have been enqueued in a specified task or any other task the
specified number of times,

• When specified timer instances have been enqueued in a specified task or any other task the
specified number of times.

For time-based breakpoints the previously described definition boxes are available via the Edit
button. For task/event breakpoints the Simulator prompts you with available task and event
names. However, defining valid combinations of events and tasks are a user's responsibility. For
event enqueueing to be counted in any task, select ***ANY*** instead of a task name.

Only one breakpoint of each kind may be set simultaneously.

Breakpoints may be redefined during the session, when execution is stopped.
Chapter 4

The Statistics, Trace and Gaugeboard pages are described in sections 6.2, 6.6 and 5.2,
respectively.

The Miscellaneous page contains one very interesting item - step granularity. This determines
which of the possible actions in a model define a step (to be performed upon pressing the Step
button once).

The default step action is the start of any task instance, but you can also select any of the
following:

• enqueueing of an event instance,

• enqueueing of a timer instance,

• ending of a task instance

being a step. The variable step granularity may be useful, when you want to watch a model
carefully, and evaluate it at after different types of elementary activities. Step granularity can be
modified at any execution break, not only at session start.

When all relevant pages of the Option box are set, press the OK button for the whole box.
How to simulate a model 35

•
•
•
•
•

36

•
•
•
•
•

Chapter 4

5

Chapter 5
Observing a Simulation session

This section covers several simulation experiments using the model described in section 2.3.
The experiments gradually reveal more and more possibilities during execution. The examples
in this section are provided to illustrate how to observe and explore a model’s behavior. The
examples in section 6 show how to obtain statistics and perform statistical experiments with the
model.

5.1 Execution by steps

Take the upgraded Office model described in section 2.1-2.3 (whose final BP is given in Fig.
2.14), with the randomized value for timer Regularly. Analyze it, if some diagram status circles
are still gray. Now all of them must be green. Then select BM tools/Simulate. Wait until the
model is correctly prepared and press OK. Now the Simulator control window is ready for your
commands (see Fig. 4.4).The task sequence described in this section corresponds to the case
when your model time at start is less than 18:00 PM (it is inside the working hours of Secretary).
If you are performing the experiment in the evening, modify the Start time.

First, let us try the stepwise execution with the default session parameters. As it was said in
section 4.3, this means that performing one step corresponds to starting one task instance.

So, press the Step button once. Now the Simulator control window has the following contents
(see Figure 5-1).
37

•
•
•
•
•

38

•
•
•
•
•

Figure 5-1: Simulator control window after one step

The status bar says that one instance of the task Send_Query has been started (actually the status
bar shows all names in uppercase and the task name is prefixed by the primary task name
Query_Processing). This prefix should be ignored in this simple example, but it is of some value
for large structured models with repeating task names. If the entire name is not visible in the
status bar, make the Simulator window larger.

This task instance has the internal instance Id equal to 1. The instance Id has no special meaning
in GRAPES-BM language, but it allows you to distinguish between several active instances of
the same task during simulation.

If you previously have not set the Start time in the Options box, the Model time field value is
dependent on the actual clock value of your computer at the moment you opened the Simulator
window. Anyway, after the first step, the model time has advanced approximately 17 minutes
past the start moment (see later in this section for the explanation of this interval). Note, that
advancement of that model time depends only upon the model, and not upon how “real” clock
time advances.

In accordance with that, the field showing Time till the end of session has the value
999d:23h:42m:34s, i.e. the default session length 1000 days minus the value spent for the first
step.

The Active task instance number field, naturally, has the value 1 - one instance is active, and no
transaction has started yet (you will see the transaction start in the next step).
Chapter 5

Now, press the Step button once more. Note that model time does not change. It means that
the next task instance has started at the same model time moment - a very typical situation.
Look carefully at the starting task name - it is Query_Processing, the name of the sole primary
task (and also of the BP diagram) in the model. This means, that a new transaction instance has
actually now started, and #2 shows that the numeric value of its TID is equal to 2. Now look
back at the BP diagram of the model (Fig. 2.14) and see that, actually, the start of the task
Send_Query must invoke the start of a new transaction instance (since Send_Query is triggered
solely by the timer Regularly). In accordance with all this, the transaction instance counter field
now has the value 1.

Press Step once more. Now the status bar shows that task Register_Query has started at the same
model time moment. Note that Send_Query has a zero duration, and in the given stepping
mode, you don't see the ends of the tasks (actually the task Send_Query has ended now).

If you like, you can continue such single stepping. Such a mode can help you to understand the
behavior of an unfamiliar model.

For such an exploration one more feature may be helpful. During simulation you can look at
any diagram of the model in read-only mode. To do this, toggle to the GRADE Modeler
window (by means standard to Windows 3.11 or Windows 95 environment, e.g. by mouse or
ALT+TAB). Now you can open any diagram in the model and use all navigation facilities. But
you cannot edit anything (see the shortened toolbars in the editors!). If your screen has a
resolution high enough, it often makes sense to place the Simulator window on top of (or along
side) a maximized Modeler window, in which you place the BP diagram you are simulating.
Note that the Simulator window can be freely moved and resized, as any other window. Fig. 5.2
shows such a screen with BP Query_Processing after step 4. If you spot a model error in such step-
wise processing, you have to first exit the Simulator, close all diagrams which were opened in
GRADE in the read-only mode, and only then start editing the erroneous diagrams.
Observing a Simulation session 39

•
•
•
•
•

40

•
•
•
•
•

Figure 5-2: BP diagram in read only mode and the Simulator window

We will now proceed with a different level of step detail. Press the Reset button to start the
session anew. Actually, you could redefine the step granularity at any step, but simply it is easier
to explain the detailed behavior from the very beginning. Select Options/Miscellaneous (via the
OM button) and check the remaining three check boxes in the Step granularity area, then press
OK.

So, now the model time has also been reset to its start value. Press the Step button, and an
entirely different message appears in the status line, saying that the timer Regularly has been
enqueued in the task Send_Query. Now you can actually understand why the model time was
advanced by 17 minutes - the first random value for that timer interval happened to be exactly
that (the mean interval value is 90 minutes!). Press Step once more and see the already familiar
step saying that task Send_Query has started. The next step again shows the transaction start.
But the fourth step shows a new moment - the instance when task Send_Query has ended. The
next step shows that the output event Query has been sent and enqueued in the input queue of
the task Register_Query. Only the next step shows that task starting.
Chapter 5

This mode is the most detailed possible dynamic exploration of a model. Normally it is used for
business model debugging - finding dynamic behavior errors in them. But in the beginning this
mode may be used for learning the executable language semantics - just make anything
syntactically correct and see what happens.

One more possibility is to inspect the model status after the step - as described in 6.3.1 and 8.

5.2 Execution in Run mode

On the one hand, this is the simplest model execution mode, but you don't see much of what
is happening unless some additional steps are taken (which will be discussed later).

Enter the Simulator once more (or if already open, press Reset).

To start the run mode, simply press Run button. See, how the fields

• model time,

• active task instances,

• active transaction task instances,

• time till the end of the session

change.

But nothing more can be seen, if you don't set any additional parameters.

So, press the Pause button to stop the execution. Pressing Run again will resume the run mode.
Alternatively, you can make one or more individual steps after the pause.

One interesting feature when used in conjunction with the run mode is adding some user
defined fields to the Simulator window. These fields are named gauges. To use them, enter the
Options/Gaugeboard via OG (see Figure 5-3). Here you see the three default fields in the
Simulator window. You can add more fields now. The total number of fields is limited by your
screen resolution (e.g., 9 for the screen resolution 1024*768). You can also remove some of the
default fields. To add a gauge, press the Add gauge button, and enter the gauge (or field)
definition box (see Figure 5-4).
Observing a Simulation session 41

•
•
•
•
•

42

•
•
•
•
•

Figure 5-3: Options/Gaugeboard page
Chapter 5

Figure 5-4: Add gauge (field) box

You can define a field which displays

• total number of instance starts of a specific task,

• total number of instance ends of a specific task,

• total number of enqueued events in a queue (specified by task name/event name),

• total number of enqueued timers in a queue (specified by task name/event name),

• the current length of a queue (specified by task name/event name).

The listbox at the top (see Figure 5-4) displays all possible field (gauge) options. Select one of
them and the middle part of the box prompts for the appropriate details (task, event) for the
field definition.

For example, define two fields

• count the number of instances that the task Forward_to_Chief has started,

• the length of the queue Query in the same task Forward_to_Chief

(Figure 5-4 shows this definition in progress).
Observing a Simulation session 43

•
•
•
•
•

44

•
•
•
•
•

For the moment, simply assume this to be a demonstration of how to define fields, but later you
will see why these values are of interest. As in other definition boxes, use the name prompters
for task and queue selection. But it is up to you to select valid combinations (afterwards you are
warned of invalid combinations).

For task count, select the option Value only, but for the queue length - the Gauge and value
option.

You can also edit the field title (identification), to ensure that all of it is visible.

Press OK to quit the options box and Run to start the execution of the model.

You see the two new fields in the Simulator window. Both have numeric fields displaying the
current count values. In addition, the second one has a green bar changing its length - this bar
is the gauge. It is especially meaningful, when two or more gauges are used, as an easy way to
compare two dynamic values.

To make things more interesting, Stop the execution, Reset it, and enter the
Options/Gaugeboard once more. Select the Active transaction task instances field, press the Edit
gauge, and set the gauge and value option for it. For gauges, their Max value (actually the scale
of the bar) is essential. Note that the default Max value is 1000. Then edit the length field
definition, and set the Max value also equal to 1000 (to adjust both gauges to the same scale).
Check whether the Min value is equal to zero.

Now, Run the model once more. After ten or so days of model time have passed, you may notice
that both gauges have nearly the same length. At this point it is also obvious that both numeric
values are also nearly the same, and that the queue length is only several units smaller.

Now Pause the model. It is time to draw the first conclusions. You see that the length of the
queue is growing very quickly - its length is nearly 135 after the first 10 days of model time.
Note that the number of uncompleted transactions is growing at the same rate. It may be that
the model is not behaving exactly as expected, and we will return to this point later on.

To make such observations easier, you can use breakpoints. Enter Options/Breakpoints via the
OB button, check the Every option and set the value (via Edit button) to 10 days.

Now, after pressing Reset, Run the model once more. You see that instead of the countdown till
session end, there is a countdown till the break point. When the breakpoint is reached, the
execution pauses automatically. Write down some interesting values and Run again. This is one
of the semi-automatic ways to obtain a series of observations. Figure 5-5 shows the Simulator
window in this experiment.
Chapter 5

Figure 5-5: Enriched Simulator window

The “numeric animation” in run mode may reveal interesting facts when you know where to
look. Therefore a better way is at first to use the proper animation offered by GRADE tools, and
then to watch some specific effects more closely.

The Simulator window displays the updated values of fields / gauges with certain intervals
(related not to the model time value, but to the number of elementary activities performed). If
you feel that the rate at which the window updates is insufficient, enter the
Options/Miscellaneous (via OM) and decrease the value of the Speed button sensitivity.
Decreasing the value too much slows down the simulation speed.

5.3 Animation of the model

Animation in GRADE-BM shows the business model “in action”. Formally this means that
dynamic elements are added to one or more BP diagrams, displaying:

• which tasks in the diagram is active,

• how many instances of a task are active,

• highlighting the event arrows along which events are traveling,
Observing a Simulation session 45

•
•
•
•
•

46

•
•
•
•
•

• showing the length of event queues.

The layout of a BP diagram in animation is the same as it was in the BP editor.

Before you start the animation, you must select the BP diagrams you want to see in motion.
Don't select too many diagrams because no display screen is large enough to display more than
a few at a time. Selection is done in the model tree window by pressing Ctrl + left mouse button
on the desired BP diagram symbols in the tree. Then enter the Simulator as always. When the
Simulator is ready to start the session, press the TA button in the Tools group (or select
Tools/Animator from the menu).

The Animator window appears and the selected diagram windows in it. The Fig. 5.6 shows the
animator window for the example (there is only one BP diagram in the example).

Figure 5-6: Animator window at the beginning of simulation

Move and resize the diagram windows to make the most interesting diagram points visible. Just
as in the BP editor, you can select the zoom factor via View/Zoom (100% is rarely the best
option, use 80% or less, since you only watch the diagrams here, but do not edit them).
Chapter 5

When you are satisfied with the appearance of the Animator window, select the Simulator
window and press Run, then you must again make the Animator window the current one. Now
sit and watch.

See how active elements (tasks, decisions and lines) become red for a certain time moment.
Tasks having durations greater than zero remain red for a longer period. A small number of
active instances appears inside the task rectangle. Queues (when not very long) are represented
by a bar of green dots (of the corresponding number) with a numeric display as well. Larger
queues are displayed only via the numeric display (plus a fixed bar of dots).

Figure 5-7 shows an example of animation in action.

Figure 5-7: Animator window in motion

Note that from time to time, for a short moment, the arrow of the timer Regularly becomes red,
then the task symbol Send_Query becomes red (and contain a number 1 in the bottom right
corner). Then the arrow Query becomes red briefly, and so on. And all this time the number
besides the bar of green dots at the task Forward_to_Chief grows larger and larger.
Observing a Simulation session 47

•
•
•
•
•

48

•
•
•
•
•

You can control the speed of the animation to a certain extent. Select the menu item
Animation/Control panel, then move the scroller thumb which appears in the box (see
Figure 5-8), and then close the box.

Figure 5-8: Animator control panel

Animation may also be done in step mode, to watch the effect of each step.

The Animator is not meant for statistical experiments. The Animator consumes a significant
portion of your computer's resources during Simulation, and will therefor significantly
increase the time required for any simulation session. The role of animation is to watch the
general behavior of a model and spot some anomalies. The Animator is also well suited for
presenting “live” the behavior of a business model to enterprise managers who do not want to
see details. There may be an unlimited number of show boxes used in animation (see section
7.5).

Exit the animation via Project/Exit, or simply exit the Simulator, if nothing more is to be done.

When you have spotted some interesting values in animation, you can chose them as additional
fields/gauges in the Simulator window. Then make repeated run without animation, and you
will be able to observe the selected values over a longer period of model simulation time. This
would be the normal way to discover anomalies in our example, where the animation shows the
abnormal growth of the queue Query for the task Forward_to_Chief pretty fast. And actually the
Run mode experiment described in the previous section should be performed now, if you have
not already done so.
Chapter 5

6

Chapter 6
Statistics in GRADE-BM

6.1 What default statistics are available

When you have spotted something interesting in a model either through gauges or via
animation, it is time to go to the statistics.

Default statistics in GRADE-BM are the most frequently used statistical observations on tasks,
events and performers. To use them, you don't need any special “programming”. You must
simply set the tool to gather selected statistics, execute the model for some time, and then review
the results.

The available default statistics items represent various integral evaluations of one simulation
session (a whole session or an initial part of it). For any of the evaluations the following data is
provided (where it makes sense):

• the total value over the evaluation period (TOT),

• maximum value over the period (MAX),

• average value over the period (AVG),

• minimum value over the period (MIN).

For some evaluations only the total values makes sense.

6.1.1 Statistics for tasks and transactions

The default statistics items for tasks are calculated for any individual (elementary) task,
appearing in a BP. The available statistics for a task include:

• total count of activations (starts) of the task(TOT),

• total count of completions(TOT),

• number of concurrently active instances (MAX, AVG, MIN),

• the processing time (duration) of the task (TOT, MAX, AVG, MIN),

• the cost of execution of the task (TOT, MAX, AVG, MIN),
49

•
•
•
•
•

50

•
•
•
•
•

• the waiting time for the task to start, i.e. the interval between two consecutive starts of the
task (TOT, MAX, AVG, MIN),

• the waiting time for the task’s triggering condition to be completed, i.e. the interval between
the first and the last event arrival, if the task is triggered by more than one event with an AND
conjunction between them (TOT, MAX, AVG, MIN),

• the time a task waits for an available performer, i.e. the interval between the moment the
triggering condition is fulfilled and the real task start (TOT, MAX, MIN, AVG),

• the time without any active instance of the task, i.e. the interval between the previous last (or
sole) instance end and the next instance start (TOT, MAX, AVG, MIN).

The first five statistics items are the most used ones, so more comments will be given on them.
Let us assume that we are looking at the task Register_Query in the example, and that model
execution period had been 10 days of model time. Then the total count of activations of this
task would be approximately 158. The total count of completions is the same or less, e.g., it
could be 157, if one instance is still active. The maximum number of concurrently active
instances in this example is 1 (since only one instance of the specified performer for the task -
Secretary is available). The minimum number of instances is, evidently, 0, and the average is
something in between (it is a weighted average taking into account the time periods when the
instance is active, with respect to the whole execution period). The processing time of the task
is very simple, it is just the duration of the task - a constant value of 3 minutes in this case. Thus,
the MAX, AVG, MIN values for the processing time all give the same value 3 min, and the total
time is the duration multiplied by the number of activations. However, a task duration may also
be non-constant, then this statistics item is of greater interest. The cost of this task, as a
consequence, also has a constant value (equal to 3/60 h multiplied by the secretary’s cost per hour
being 2.5, which is 0.125). So, in this case MAX, AVG, MIN costs all will be equal to 0.125,
while the total cost is the individual cost multiplied by the number of activations.

We will not be looking at the more complicated statistics items in this text. See their exact
definitions in the BM Language Reference Manual or in the GRADE on-line language help.

We should remember that transactions also are tasks from the statistics point of view, i.e. a
transaction defined by a BP diagram refining a task is named after that task. The first five
statistics items for tasks (and time without any instance) are computed automatically also for
transactions (the other ones simply don't make sense for transactions).

The activation statistics for transactions are defined literally in the same way as for elementary
tasks. Only here it is typical to have many concurrent instances. The most interesting ones are
processing time and cost for transactions. According to language semantics

• the transaction duration (i.e. processing time) is the time interval from its start to its end
moment,

• the transaction cost is the sum of all task instance costs which have been activated inside the
transaction.
Chapter 6

Namely, these two last definitions correspond to the intuitive meaning of a transaction as one
separate activity in a business model.

Now let us return to our example. Since there is only one BP diagram, there may only be one
transaction defined - namely that corresponding to the sole primary task Query_Processing. This
transaction starts when the timer Regularly triggers a new instance of Send_Query. And it ends
when all activities related to one query processing have been completed: either when the task
Receive_Answer, or Coffee_Break ends (depending on which of them is the last one). Formally,
the transaction includes two external tasks Send_Query and Receive_Answer performed outside
the office. But they have zero duration and zero cost. Consequently, the time and the cost of the
transaction task Query_Processing correspond precisely to the time and cost of processing one
query in the Office. You need no special programming to obtain these interesting summary
values, just watch the default statistics items for the task Query_Processing (the MAX, AVG,
MIN values for its processing time and cost).

This is a very typical situation. In most normal business models, the formal transactions
correspond to essential model activities. If more than one BP refinement level is used, the lower
level transactions yield statistics for parts of the main activity, for example, Check_in,
Security_Check, Board would be natural parts (lower level BPs) of the main transaction
Departure in an airport business model. A few of the possible pitfalls in defining transactions fit
for statistics are provided in sections 7.3.1 and 7.3.2.

6.1.2 Statistics for events

Statistics on events should actually be named statistics on queues, since that is what in most cases
you are interested in.

An event queue in a business model is uniquely characterized by the corresponding (elementary)
task name and event name. Thus, in our example there is a queue Query at the task
Forward_to_Chief.

For any of the queues the following statistics are counted:

• total number of events having arrived to the queue,

• total number of events having left the queue,

• length of the queue (MAX, AVG, MIN),

• event's location time in the queue (MAX, AVG, MIN),

• total events count (the same as total events arrived),

• interval between arrival of two consecutive events to the queue (MAX, AVG, MIN).

The length of a queue and the time the events spend in a queue are often very significant
characteristics of a business model.
Statistics in GRADE-BM 51

•
•
•
•
•

52

•
•
•
•
•

6.1.3 Statistics for performers

Statistics on performers reveal the usage of the elements (mainly positions and resources) of
ORG diagrams as performers during model execution. Only those elements of an ORG diagram
which are referenced in performer expressions of tasks appear in these statistics, i.e. unused
performers are ignored.

For each such performer the following statistical items are gathered

• available number of instances,

• total number of times seized (i.e. used by task instance),

• number of simultaneously seized instances (MAX, AVG, MIN),

• performer's utilization (total seizure time as a % of the total available time),

• productive performer's utilization (which takes into account the FOR - option in the
performer expression),

• waiting time of any task for the performer (TOT, MAX, AVG, MIN),

• idle time periods for the performer (TOT, MAX, AVG, MIN),

• usage time periods for the performer (TOT, MAX, AVG, MIN).

The first item is actually copied from the ORG diagram. The most essential items, as a rule, are
simultaneously seized instances, performers’ utilization and task waiting time for the
performers. Utilization, seized instances and idle time are computed only with respect to the
availability periods of the performer. It should be remarked that the Simulator assumes that any
task having started just before the end of availability, is normally completed outside the
availability period (i.e. the performer works “overtime” to finish the task before “leaving”. This
may sometimes cause slightly unexpected results - a utilization rate greater than 100%,
especially in models where individual tasks have been defined with very long durations such as
4 hours or more.

6.2 How to start gathering statistics

Now that you know what statistics are, it is time to use them.

Switching the statistics on is very simple. Before the session start, enter the Options box, Statistics
page (via the OS button). The Default radio button in the Style area must be on. Now you see
the complete list of available statistics items, with a check box for each. Actually, some items are
grouped, e.g., task activation, and only the group name appears for these in the list (see Figure 6-
1).
Chapter 6

Figure 6-1: Statistics page in the Options box

Check the items you want enabled and press OK. Now any execution will automatically count
the selected items.

The statistics mode can be set only before the start of the session. If you have forgotten to switch
the statistics on, reset the session and then switch them on.

If you don't exactly know which statistics items will be of interest, switch them all on. The
execution speed is reduced slightly when all statistics are being gathered, and the most
“expensive” are performer statistics. The other problem is disk space, if you want the statistical
results to be saved in many copies (from simulation sessions of varying length). Each of the items
take up approximately 50kb on the disk when you save them.

Now set the desired session length and start the session. After the session end, select the TS
button in Tools group (or Tools/Save session results from the menu). The Save results as box
appears (after a slight pause). Select a unique name for the results and enter it in the Results
object name field, and press OK. Now your results are saved under the selected name (in a
directory called “Results” as a subdirectory to the directory holding the model itself).

If you don't exactly know how long the session must be to gather representative results, a good
practice is to set an interval based (Every) breakpoint. After reaching a breakpoint, review the
results, perhaps save them, and resume the simulation session up to the next interval. Thus a
regular series of results may be obtained.
Statistics in GRADE-BM 53

•
•
•
•
•

54

•
•
•
•
•

6.3 Reviewing the statistics

There are two ways of reviewing the statistics - inside the Simulator, and via the Trace browser.

6.3.1 Reviewing statistics in the Simulator

This method should be used for a quick review of some statistical items and can be easily used
whenever the simulation is paused.

Press the IT button in the Simulator window (or Inspect/Tasks from the menu), and the Inspect
box appears, with Tasks page on top (see Figure 6-2).

Figure 6-2: Inspect box

The Inspect box has two interesting pages: Tasks and Performers (there is also a third page SP
parameters, see section 7.4). In the Tasks page you can obtain statistics on any task or event. In
any case, select the appropriate task in the Tasks list. All task names are prefixed by the
corresponding upper level task names, so actually only the last component is significant.
Transaction tasks are in the same common list.

To review the statistical items for a task, press the Statistics button after the task name is
selected. All items are available now, again with some grouped together. Figure 6-3 shows the
task statistics for the task Forward_to_Chief.
Chapter 6

Figure 6-3: Task statistics for the task Forward_to_Chief

Select the appropriate Kind of Statistics radio button to review the desired item (Figure 6-3
shows the activation group).

The examples used here show the statistics after 10 days of model time.

If you want to look at statistics for another task, press the Previous button.

To review event statistics, select the task, then select the event queue name in the Event queues
area and double-click on it. A new page with a Queue statistics button appears. Press it and the
Event statistics page appears.
Statistics in GRADE-BM 55

•
•
•
•
•

56

•
•
•
•
•

Figure 6-4: Event statistics page

Figure 6-4 shows the event statistics for the queue Query in the task Forward_to_Chief, namely
its length.

To return to the Tasks page to examine something else, press Previous twice.

To review performer statistics, select the Performers page via the Performers tab (below the Tasks
page, see Figure 6-2). See the result in Figure 6-5.
Chapter 6

Figure 6-5: Performer statistics page

Select the desired performer in the drop-down list (the names are qualified by higher level
elements in the ORG diagram, usually ORG units!) and review the desired item (Fig 6.5 shows
the simulation dynamics for Secretary).

The advantage of reviewing statistics via Inspect is the easy access to any element, whenever
simulation is paused. The disadvantage here is that you can't simultaneously review and
compare statistics for several objects (tasks, events).

6.3.2 Reviewing statistics via Trace browser

This method should be used for more thorough examination of larger amounts of statistical
information, e.g., at the end of the session. It takes more time to prepare, but provides more
possibilities, including viewing statistics in the form of charts.

You can start the Trace browser in two ways

• from the Modeler window (BM tools/Open simulation results, makes sense if there are
saved statistics results),

• from the Simulator window (TB button or Tools/Trace browser), to review the current
results.
Statistics in GRADE-BM 57

•
•
•
•
•

58

•
•
•
•
•

In both cases the Trace browser window appears (Figure 6-6). In the former case you must open
one of the sets of saved results (File/Open, then select one of the available result names in the
Open results box). In the latter case, the current results are already present.

Figure 6-6: The Main window of the Trace Browser

Now the procedures are common for both cases. Press the Open button

 () in the toolbar. A box with available statistical items appears.
Chapter 6

Figure 6-7: Statistics items available in the Trace Browser

Select one of them and press OK, e.g., Activation of Tasks (table). The results will be opened
in tabular form.

Figure 6-8: Statistics table of task activation

The Fields button allows you to alter the settings for columns in the table. Usually, it is
recommended to deselect the Qualified Task name, and for flat models, also the BP name
columns (Figure 6-8 shows these columns deselected). You can select or deselect any column.
Statistics in GRADE-BM 59

•
•
•
•
•

60

•
•
•
•
•

The column width also may be adjusted in the column header area (just as in spreadsheet
program). The column titles also shorten then (Total actually is Total count of activation in
Figure 6-8).

There are many more possibilities in the table window:

• Filter for selecting subsets of rows according to a definable filtering condition,

• Find for finding a row with a given value in a given column,

• Sort for sorting the rows in an order other than the natural alphabetical one.

Now select another object via the Open button - the Activation of the Tasks (chart). The same
data is now displayed in a vertical bar chart (see Figure 6-9). The colored bars correspond to the
maximum, average and minimum values of the number of concurrent instances. The legend
explaining which bar number corresponds to which task is visible in the bottom. You can
control the presence of columns in this label list via the On X button. On the other hand, the
On Y button permit you to control which data (TOT, MAX, AVG, MIN) for the item to show
in the bar chart. You can keep as many tables and charts open as you like and switch between
them.

Figure 6-9: Task activation chart

Windows can be closed with the Close button.
Chapter 6

Yet another possibility is the direct export of a table to Excel. Select View/Export in the Trace
browser window menu, then select Excel mode in the Export box. The table is automatically
exported to Excel and Excel is started on top of the Trace browser (with the exported data in the
worksheet named Data). Certainly, you must have Excel installed to use this feature. Exporting
to Excel is a good way to continue nonstandard numeric processing of statistical data. Charts
also may be exported directly. Tables may be exported also to Word for Windows, and they
become Word tables.

When you have finished the examination of the results and Exit the Trace browser, you are asked
whether to save the current results. Save them, if you have not already done so and want to
revisit them later.

6.4 A small statistical experiment

Now, let us try to apply the previously described techniques to improving the behavior of our
Office example.

First, take it as it was “designed” so far and run it once more, with all statistics switched on, for
10 days. More specifically, set the session length equal to 10 days and run it. To obtain the same
results as in our figures, set the session start to 20:00 (date irrelevant). Then look at the statistics
via Trace browser. Open the Length of Queues of Events (table).

Figure 6-10 shows what you will see. Actually, to make the table more compact, the fields
(columns) BP name and Qualified Task name have been removed.
Statistics in GRADE-BM 61

•
•
•
•
•

62

•
•
•
•
•

Figure 6-10: Lengths of queues (initial)

You can see that the only remarkable queue (with a maximum length of 135 and an average of
56) is the queue Query in the task Forward_to_Chief. It is a precise statement of some possible
problem which was already noted superficially in the previous sections.

To find out the cause of such an unexpectedly long queue, look at another statistics table, the
Activation of the Tasks (table). When a long queue is spotted, it is natural to inquire as to how
frequently the task has been started. Figure 6-11 shows the table (after removal of the same field
as in the previous one).
Chapter 6

Figure 6-11: Activations of tasks

You see that the task Forward_to_Chief has been activated only 8 times in 10 days, i.e. less than
once per day.

Now it is time to close the Trace browser and to look at the BP diagram and event table. The
cause may already be clear to you. If not, take a closer look at the model in action.

Reset the session and set one more breakpoint in Options/Breakpoints/Events and Timers page -
when the timer At_5_PM is enqueued 1 time in task ***ANY***. Then go to the page
Miscellaneous and check all non-checked activities in Step Granularity. After that, press Run to
reach the specified breakpoint, and then start simulating with the step function. You see the
sequence of the following steps:

- Timer At_5_PM enqueued (time 17:00),

- Task Query_Processing.Forward_to_Chief started (time 17:00),

- Task Query_Processing.Forward_to_Chief ended (time 17:01),

- Event Query enqueued (time 17:01).

The next event is unrelated, and occurs at a much later time. If you repeat the experiment, and
after the task Forward_to_Chief has ended, perform an Inspect (IT), and you will see the Inspect
window (Figure 6-12) showing that the task Forward_to_Chief has zero instances of timer
At_5_PM in its queue and 7 Queries.
Statistics in GRADE-BM 63

•
•
•
•
•

64

•
•
•
•
•

Figure 6-12: Inspect after Forward_to_Chief has ended (at 17:01)

The timer At_5_PM has vanished at 17:01 and only one instance of the task Forward_to_Chief
occurred, because it has no persistence interval specified. This is the current cause of the
anomalies in our model.

Exit the Simulator and add a persistence interval to the timer in Event table. What value? Let's
make the first guess that 20 minutes would be sufficient (it takes 1 minute to forward a query).
Update the event table, reanalyze the model and restart the statistics experiments. Since this time
a more serious experiment may be made, use the default session length (1000d), but set the
duration (every) breakpoint after 10 days. Switch all statistics on and add the field showing
length of queue Query in task Forward_to_Chief to the Gaugeboard. Since the selected session
parameters may have value for future experiments, it makes sense to save them. To do so, press
Save in the Initials page and select a name for them. Now start the session. Note, that the
additional field shows that the queue of interest still grows pretty fast (it has a value of 47 after
10 days). After reaching the breakpoint, enter the Trace browser, watch the same Queue length
table and see that the queue has a maximum length of 52 and an average 13.3
Chapter 6

Figure 6-13: Lengths of queues after 10 days (with persistence 20 min)

To be completely sure, close the Trace browser and continue to run for another 10 days.

Note that the length of the queue of interest continues to grow - it has a value of 113 after 20
days.

After entering the Trace browser and opening the same table, you see that the maximum length
was 119, and the average was 44.8
Statistics in GRADE-BM 65

•
•
•
•
•

66

•
•
•
•
•

Figure 6-14: Lengths of queues after 20 days (with persistence 20 min)

Note, that some of the other queues have begun to grow also.

All this shows that the persistence interval specified (20 minutes) was insufficient to forward the
queries having arrived during one day.

It is time to select the next value. Lets us try 45 minutes. As before, update the model, reanalyze
and restart the Simulator. Now you can reuse the saved session parameters (from the previous
experiment with persistence 20) via Load (always close the Options box with OK and not with
Cancel after Load).

Now the additional field shows that the queue we are monitoring grows only slightly, it has a
value of 13 after 10 days.

Statistics show that the queue of interest has a maximum value of 25 and an average of 4.87.
When compared according to average values, the longest queue now is Assess_Query (MAX - 22,
AVG - 11.6). Save the current results for comparison.

To be more sure of the results, make an additional run for 90 days (i.e. set the breakpoint after
90 days, so that the total length of the experiment would be 100 days). After the breakpoint save
the new results (under another name) and start to analyze them (see Figure 6-15).
Chapter 6

Figure 6-15: Lengths of queues (final version)

You see that the previous problem queue now has a moderate size (MAX - 64, AVG - 10.3).
Another problem queue - Query for the task Assess_Query has clearly manifested itself (MAX -
176, AVG - 91.8). A closer look shows that one more queue associated to a task performed by
Chief (the task Analyze_Review) is also pretty long (MAX - 37, AVG -11).

The new bottleneck task, Assess_Query, has no relation to timers. It is the first task in a series of
tasks performed by Chief of the Office. The possible cause of the bottleneck could simply be the
overloading of Chief.

Open the chart, Performers Utilization, and you can see that the utilization of the Chief is
99.7%.

The Secretary is not overloaded - her utilization is 80%.
Statistics in GRADE-BM 67

•
•
•
•
•

68

•
•
•
•
•

Figure 6-16: Chart of performer utilization

There is apparently no easy solution to this problem. Perhaps the office has to employ a new
position - clerk, also capable of finding a reviewer and analyzing reviews.

The related question is that our BP diagram prescribes repeated reviews in the case of
insufficient answers. But what is the average repetition rate for query processing (i.e. inside one
transaction)? This might also clarify the workload on Chief. We answer this question in the next
section.

Open also the task cost table and see the average and maximum cost of processing one query
(the cost also depends on the number of repetitions).

We conclude this section with a few general notes from general simulation practice.

Don't expect the numeric values obtained from your initial simulation experiments to be too
precise.

The precision of your experiments will increase from having the experience of working with the
Simulator, as well as in gathering the raw data required for simulation.

The question of the sufficient length for an experiment in simulation is very complicated. But
there is a general principle that

Precision in a simulation experiment is approximately proportional to one divided by the square
root of the number of observations.
Chapter 6

In our example one observation corresponds to one query.

In other words, 100 queries processed yield one valid decimal digit (about 10%), i.e. 1600
queries in our longest run of 100 days produces approximately a 3% level of precision.
Certainly, for values affected by a small fraction of queries, the precision is lower. These
percentage limits serve only as guidelines, and not as strict statistically proven estimates.

Never try to make the estimates too precise. Simulation in business modeling is about
identifying and analyzing the major trends, not extracting every last percent of performance
from the model.

Don't forget that numeric parameters in the model (duration, decisions) are frequently not very
accurate. The gathering and the usage of raw data for simulation, is a matter of common sense.
Often, using a stopwatch (or other such measures) to time tasks in an organization will produce
negative or misleading raw data, whose reliability is no higher than figures obtained through
informal interviews used with prudence and common sense. We are really trying to identify the
most important factors that affect the business model’s behavior. These are usually those changes
that make a 30% efficient process 80% efficient, rather than those that try to gain one or two
percentage points in a 90% efficient process. Again, we restate - It is the intelligent user who,
together with the GRADE tool set and a modicum of good common sense, provides innovative
improvements in business systems.

6.5 User attributes in statistics

In this section we will show you how to produce a statistical estimate of the average number of
times an answer was provided for one query.

For such simple counting, user defined attributes are well suited.

In addition to default statistics items, it is possible to include default statistical processing for
any user defined attribute of a task or a transaction. This means that for the attribute, the total,
maximum, average and minimal values are computed (the same way as values are computed,
e.g., for task cost). The total, average, etc. value is computed over all task or transaction
instances, which have this attribute defined. If you want, e.g., to compute the average of some
attribute over the instances of only one task, then ensure that only in this task the attribute is
defined. For example, introduce a special task type, which is used only for this task.

There are two typical usage cases of attributes in statistics

• some of the tasks have user defined attributes with varying values, influenced, e.g., by data
carried by events,

• statistics are gathered on transaction attributes, which in turn are computed as sums from
elementary task attributes.
Statistics in GRADE-BM 69

•
•
•
•
•

70

•
•
•
•
•

The first case is applicable only to highly data-rich business models, where events do carry data
with them and decision and calculations are to be made based on this data.

The second case is applicable to any model, and will be used for our investigation. Here the same
principle is used as for transaction costs: the cost of a transaction is the sum of costs of all the
elementary task instances contained in the transaction instance. Similarly, if the transaction has
an attribute b which is defined by the formula SUM(a), then this sum is assembled from all
values of attribute a, possessed by elementary task instances contained in the instance of the
transaction. The only difference is that any elementary task has its cost (0, if nothing is
specified), but not all elementary tasks have a specified attribute a.

So, let us apply this principle. We have to count the number of times the review is requested for
one query. Let us call this the “total counter” attribute Tot_times. Let us introduce an attribute
table named Tot_attr, containing this sole attribute, having the type integer

Figure 6-17: Attribute table Tot_attr

This task type Tot_attr is assigned to only one task in the model, namely, the transaction task
Query_Processing. Now the TD of this task has the form

Figure 6-18: TD of Query_Processing

Tot_times is defined here as SUM(times) (the idea here is to add times once per review). The times
is another attribute, which is defined in the attribute table Attr1

Figure 6-19: Attribute table Attr1

The task type Attr1 (and consequently, the attribute times) is assigned to only two tasks:
Find_Reviewer and Assess_Query. The task Find_Reviewer, which is activated just once for each
review, has the attribute times with a constant value of 1. The TD body of this task now appears
as follows

Name: Type: Default: Unit: Formula:

tot_times INTEGER

Task : Query Processing Type : Tot atr
Attributes :
tot times:SUM(times);

Name: Type: Default: Unit: Formula:

times INTEGER
Chapter 6

Figure 6-20: TD body of Find_Reviewer

As a result, for each review found inside the transaction corresponding to one query, a value of
1 is added to the “total counter” Tot_times. For example, if two reviews are required for the
query, this adds 2 to Tot_times.

The task Assess_Query, which is activated once per query, is used as “the total counter initializer”.
In this task, the attribute times has a value of 0.

Figure 6-21: TD body of Assess_Query

Such an initializer is necessary, because some queries require zero reviews, and otherwise
Tot_times would have an undefined value for such queries.

As a result the value of Tot_times for each query is exactly the number of reviews. Another task
is to find the average of Tot_times.

Now enter all these improvements into the model: two ATR tables and three modified TDs, no
modifications to BP.

Reanalyze the model, and before the session start, in Options/Statistics page, besides the style
Default, enter also style User defined. The following page appears

Task : Find_reviewer Type : Attr1
Performer :
Chief
Duration : "10m"
Attributes :
times: 1;

Task : Assess_Query Type : Attr1
Performer :
Chief
Duration : "5m"
Attributes :
times:0;
Statistics in GRADE-BM 71

•
•
•
•
•

72

•
•
•
•
•

Figure 6-22: Including user attributes in statistics

Select Tot_times in the left side and press Add. Tot_times is transferred to the right side, and
statistics (TOT, MAX, AVG, MIN) are counted also for it. Now start the run. After some time,
take a look at the Inspect/Statistics for the task (transaction). Query_Processing will also include
an Attributes page, where you can see current statistics on Tot_times.

When a run of, e.g., 100 days is completed, open the Trace browser. Note that among the
tables/charts offered there is also a Task Attributes (table), where you find just one row with
Tot_times.

Figure 6-23: Task Attributes (table) after 100 days
Chapter 6

After 100 days the average of Tot_times is 0.96. It could provoke an assumption that the actual
value is just 1.0. Formally, we can't assert anything, the precision of the result after 100 days
could be about 5% (see the end of previous section). (For those who understand probabilities
well: try to prove that in this case the average indeed is equal to 1 - on the basis of what you see
in the BP diagram.)

What does this all suggest with respect to the overloaded Chief problem? Approximately 1
review is required per query, but since half of the queries don't need reviews at all (see the
decision), for the remaining queries an average of two reviews, most probably, is required. All
this helps to balance the load of Chief, if something is reorganized in Office.

It should be noted that the cost of processing a query depends significantly on the number of
times it is reviewed. Note that the maximum number of reviews per query in the experiment is
10. This explains the high maximum value for the cost of query processing. We might at this
point question the wisdom of even processing defective queries more than a few times.

6.6 Use of the trace for obtaining time dependent statistics

All automatic statistics gathering features described so far were oriented towards obtaining some
summary or average values over a period of time.

To observe process dynamics in time, another facility is present in GRADE simulator. Selected
business process activities together with their relevant data and time-stamps can be recorded in
a textual (ASCII) file, well suited for import into an Excel spreadsheet. Thus the actual numeric
post-processing of simulation data is done within Excel. Various numeric characteristics of a
system's behavior in time can be easy obtained this way, including line charts with time on the
X-axis. Such an approach has been chosen because time-dependent analysis of systems is very
versatile but also be done in several different ways. The user himself must “program” the post-
processing of the raw data in Excel or a similar spreadsheet tool, while GRADE provides
facilities for flexible filtering of data to be recorded during a simulation session to ensure that
only the necessary data is gathered.

The filtering of the data to be recorded in the trace is set in the Traces page of the simulator
Options box. Recording may be performed in an ASCII file and in a special internal format to
be used by the Tracer browser (discussed in 6.3.2 in connection with browsing statistics, see on
browsing trace via Trace browser in 8.6). The only alterations that the user can make to the pre-
defined reports is to filter out certain parts of the data. The filtering mechanism applies equally
to both kinds of recording, both may even be recorded simultaneously.

Let us apply the dynamic analysis to our example, with the goal to see how the duration of
processing one query varies in time.

Every activity recorded in the trace carries a “time-stamp” - the value of the time moment when
it occurs. The following activities are available for recording:
Statistics in GRADE-BM 73

•
•
•
•
•

74

•
•
•
•
•

• task started

• task ended

• event enqueued

• event consumed

• event discarded

• event sent

• performer seized

• performer released

• decision taken

For statistical analysis the most interesting activities are:

• task (transaction) ended

• event sent

When either of these two activities occurs, data relating to them also may be recorded

- task or transaction attributes,

- event fields,

respectively.

Other activities carry no data and are mainly used for model debugging (see 8.6).

For our analysis the end of the transaction task Query_Processing would be the most appropriate
selection, since its Duration attribute is exactly the time required to process the current query.
The time-stamp associated with this activity gives the time moment for the reference (note only,
that it is the transaction end moment, but not the start moment). So we want to record all ends
of task Query_Processing, together with the task attributes.

To do this, open the page Options/Trace via the OT button (see Figure 6-24).
Chapter 6

Figure 6-24: Trace page of the Options box

Check the check box Write trace to file, set the output file name and the field delimiter for Excel
(the default comma is OK).

Then set the activity filter. Check the End task check box, as a result the Details button is
enabled. Click it, and the task selection box appears (Figure 6-25).
Statistics in GRADE-BM 75

•
•
•
•
•

76

•
•
•
•
•

Figure 6-25: Task selection box for trace

Deselect all tasks, and select only the task Query_Processing. Be sure that no other task is selected
and that the Write attribute values check box is on.

One tip must be remembered. Select a time format in the Simulator which contains numeric
month denotations (e.g. the pattern yyyy.mo.dd hh:mi:ss). The time pattern is the lowermost field
in Options/Initials.

Now the simulation session may be started. Select a reasonable session length. The data to be
recorded does not consume much disk space, approximately 130 bytes per transaction ended in
this example. But a session that is too long makes no sense, since only general trends can be
Chapter 6

obtained this way. When the session has stopped, review the obtained trace file. Normally it is
meant for import in EXCEL, but you can open it in any text editor. Figure 6-26 shows the initial
fragment at the file.

HEADLINE,END_TASK,QUERY_PROCESSING,BM,DURATION,COST,TOT_TIMES

1997.07.18 10:53:00,END_TASK,QUERY_PROCESSING,BM, 1.1080407E+00, 2.3750000E+00,0

1997.07.18 11:14:00,END_TASK,QUERY_PROCESSING,BM, 1.0498825E+00, 2.3750000E+00,0

1997.07.18 11:20:00,END_TASK,QUERY_PROCESSING,BM, 7.6879137E-01, 2.3750000E+00,0

1997.07.18 12:47:00,END_TASK,QUERY_PROCESSING,BM, 8.1386211E-01, 7.7500000E+00,1

1997.07.18 15:04:27,END_TASK,QUERY_PROCESSING,BM, 2.8472222E-02, 2.3333333E+00,0

1997.07.19 10:53:00,END_TASK,QUERY_PROCESSING,BM, 1.4914255E+00, 2.3750000E+00,0

1997.07.19 11:34:00,END_TASK,QUERY_PROCESSING,BM, 1.4989838E+00, 2.3750000E+00,0

1997.07.19 11:50:00,END_TASK,QUERY_PROCESSING,BM, 1.3610460E+00, 2.3750000E+00,0

1997.07.19 11:59:00,END_TASK,QUERY_PROCESSING,BM, 1.3649736E+00, 2.3750000E+00,0

1997.07.19 12:42:00,END_TASK,QUERY_PROCESSING,BM, 8.3833991E-01, 2.3750000E+00,0

1997.07.19 13:42:00,END_TASK,QUERY_PROCESSING,BM, 9.2776263E-01, 7.7500000E+00,1

1997.07.19 14:22:00,END_TASK,QUERY_PROCESSING,BM, 1.1054169E+00, 1.3125000E+01,2

1997.07.19 14:41:00,END_TASK,QUERY_PROCESSING,BM, 1.0941878E+00, 1.3125000E+01,2

1997.07.19 15:25:00,END_TASK,QUERY_PROCESSING,BM, 5.4845208E-01, 1.3083333E+01,2

1997.07.19 16:32:00,END_TASK,QUERY_PROCESSING,BM, 1.0217408E+00, 1.8500000E+01,3

Figure 6-26: Initial fragment of trace file

Each record occupies one line, fields are delimited by commas. The first line is different from
others, it starts with the name HEADLINE, and gives the names of attribute columns in the
following lines. The first column is always the time stamp. Then the activity identification
columns (activity type, task name, BP name) follow. Since only one kind of activity is recorded,
they all are constant in Figure 6-26. If more than one task end were recorded, there would be
more HEADLINEs, and the identification columns would be significant. In our case only the
first column (time stamp) and the fifth one (duration value) are important. The seventh column
(number of reviews used per query) may be also of some interest. This column is recorded as a
by-product, since a complete set of attributes is always recorded.

Note one peculiarity in data formats. The time format may be controlled by the pattern in the
Simulator, but duration is always recorded as a float value (expressing the number of days). This
is the only format compatible with Excel, since Excel has time but no duration data type built
in. Such floats can be interpreted by Excel as one of its time formats, which is the closest
equivalent to GRADE Duration.

Now import the file into Excel. The standard import procedure (with comma set as delimiter)
may be used. You may format cells in the columns after the import is complete, formatting is
recommended for the time and duration columns (for duration use, e.g. the time pattern
hh:mm:ss).
Statistics in GRADE-BM 77

•
•
•
•
•

78

•
•
•
•
•

Tip for import. Be sure that the Regional settings of Windows 95 define the period as the
decimal symbol. Figure 6-26 shows that the GRADE export uses the period in that role.

Now you can perform any analysis of the data, as the import is complete. One of the simplest
way is to draw a line chart on the basis of the columns A and E (the duration in column E on
Y-axis, time stamp - on X-axis). Figure 6-27 shows the result (after 160 queues processed)

Figure 6-27: Variation of time (in hours) for processing one query

The chart clearly shows that the average time for the processing of one query increases
proportionally to elapsed time.

You could also analyze the processing duration as a dependent of the transaction start time. To
do this, more attributes of the transaction are necessary. See hints for such “programming” in
7.6.2. Or, alternatively, you can do some more calculations in Excel and arrive at the same result.
Another way of gathering data for trace-based statistics is via event data (using the activity record
Send event). “Programming” hints for this style are also given in 7.6.2.

The textual trace saved in a file may be used also for other kinds of analysis in Excel, such as use
of different performers and components of costs.

The current version of GRADE now includes a set of Excel macros which facilitate such
analysis, namely, they perform

• automatic conversion of the trace to a readable table

• finding the costs spent by each performer for each of the tasks he performs

To use the feature, the textual trace must contain activity records for

• performer released

0:00:00

12:00:00

24:00:00

36:00:00

48:00:00

60:00:00

72:00:00

84:00:00

96:00:00

108:00:00
97

.0
7.

18
10

:5
3

97
.0

7.
19

11
:5

0

97
.0

7.
19

16
:3

2

97
.0

7.
20

13
:2

7

97
.0

7.
21

11
:4

9

97
.0

7.
21

17
:0

1

97
.0

7.
22

12
:0

6

97
.0

7.
22

15
:3

9

97
.0

7.
23

11
:5

8

97
.0

7.
23

15
:0

4

97
.0

7.
23

17
:3

3

97
.0

7.
24

12
:3

9

97
.0

7.
24

15
:1

7

97
.0

7.
25

13
:4

8

97
.0

7.
26

10
:5

9

97
.0

7.
26

17
:4

5

97
.0

7.
27

9:
38

97
.0

7.
27

12
:3

1

97
.0

7.
27

16
:3

4

97
.0

7.
28

12
:0

9

97
.0

7.
28

15
:2

9

97
.0

7.
29

14
:3

6

97
.0

7.
29

17
:2

8

Chapter 6

• task ended (with attributes)

Other activities may also be recorded.

When the session has stopped, start Excel from MS Office 97 (Excel 95 not supported!) and
perform the following actions

• open the table.xls in your GRADE directory (this file contains the macros)

• select the menu item Tools/Macros

• select the macro PerfCost and press Run

• specify the full path of the generated trace file and press OK

In the result an Excel Workbook is generated with two sheets - PerfCost and TRACETMP.

The sheet PerfCost contains a table where for each performer and each task which is performed
by it four cost values are given: Min, Max, Average, Total. The statistical processing is performed
over all recorded instances of tasks with the given name/performer. Only the default cost
attribute is taken into account.

Total costs spent by a performer for any of tasks he performs are also given (the same 4 values)

The sheet TRACEMTP contains the complete formatted trace table.
Statistics in GRADE-BM 79

•
•
•
•
•

80

•
•
•
•
•

Chapter 6

7

Chapter 7
Some hints on GRAPES-BM in simulation

We assume that you are familiar with the GRAPES-BM language in general, at least up to the
level described in the BM Language Guide Part 1. This section provides additional information
on some topics in GRAPES-BM, which are essential for designing simulatable models.

7.1 Building load generators

7.1.1 More on using timers

As it was emphasized already in 2.2, any simulatable model must have at least one activity
stimulus in the form of a timer. And this timer must trigger some task.

But there is more to it than that. The behavior of a model depends significantly on its stimulus.
As a rule, stimuli correspond to real input flows from the environment, creating the workload
of the business system.

This is a topic investigated thoroughly in Operations Research. From Operations Research, we
mention only the concept of simplest flow - the rule which typically governs the rate of visitors
in an office, buyers in a shop, subscriber calls in a telephone exchange etc. The simplest flow is
characterized by the fact that the interval between two consecutive activities is exponentially
distributed, and one divided by the mean value of the interval is called the flow intensity. Thus,
in our example in 2.2 we assumed that the flow of queries from customers is exponentially
distributed with a mean value of one and a half hours.

Typical simplest input flows should be defined as it was done in the example - via a Repetition
timer with an exponentially defined interval, triggering an external task, actually supplying the
needed input to the system.
81

•
•
•
•
•

82

•
•
•
•
•

Figure 7-1: Schema of typical load generator

The previous picture shows a typical load generator in GRAPES-BM. If there is more than one
input flow, an independent timer should be assigned to each - there could be incoming queries,
applications, requests, bills etc. in a larger office.

The main problem in practice is to measure accurately (for existing systems) or to forecast (for
future systems) the mean value of the interval between activities. Typical system behavior is very
sensitive to these values - you could see by performing one more simulation experiment, that
changing the mean interval value of Regularly to 1h:45m completely eliminates large queues in
the Office model (while the utilization of Chief is still about 95%).

The GRAPES-BM language permits, in the Repetition specification of a timer, the usage of
complicated expressions. The only requirement is that the expression must have a result type
Duration and must contain only constants as ultimate arguments of the expression (including
named constants from the SP, see more in 7.4). The available random functions are
EXPONENTIAL, UNIFORM, NORMAL. The following is a valid timer specification.

Figure 7-2: Example of a Complicated timer

This mechanism allows one to specify flows other than the simplest ones.

Timers with Time specifications are seldom used for defining load generators, since only a very
specific interval (1 hour, 1 minute etc.) may be conveniently and easily defined.

The described features permit one to define load generators with fixed interval distributions
during the whole day or week. In our example, queries arrive at the same rate during the working
hours of the office and during the night (for example, they may be assumed to be arriving via
fax machine). But another situation is also possible, when the load generator must supply the
load only during the working hours of the system. For example, if queries were to be presented
by customers personally, this could be done only during the working hours of the secretary. The
problem can be solved by assigning availability also to external performers. The same initial
fragment

Generate_request
Customer

New_request

Request

. . .

Name: Category: Type:

New_request Timer REPETITION(EXPONENTIAL

(Mean_interval))

Request Message

. . .

Name: Category: Type: Persistence: Transfer time: Description:

Tim Timer REPETITION("1h"+UNIFORM("
2m", "6m")+EXPONENTIAL("3m"))
Chapter 7

 with

Figure 7-3: Modified load generator for queries

where the Customer now has the availability “*.*.* (09:00-18:00)” may be used. The mean value
of the intervals for the timer Regularly has to be modified also. In order to retain the same
average number of queries per day (namely, 16), EXPONENTIAL(''33m:45s”) is now to be
used. The timer instances being created during the Customer's “sleeping time” will simply be
ignored.

A similar construction, but with two separate timer-based load generators combined (each
activated by a separate “customer” with different availabilities) may be used to emulate, e.g., a
different workload on weekdays and holidays.

One more possible use of load generators is to supply “packages” (of fixed or varying length) of
stimulus regularly. If a batch of 10 requests with the interval of 1 min is to be supplied every
hour, the following fragment will solve the problem

Figure 7-4: Generator of batches

Send_Query
Customer

Register_Query
Secretary
"3m"

Regularly
Query

Office_and_Environment

Office

Reviewer
Cost per hour : 4

Customer
Availability : "*.*.* (09:00-18:00)"

Transfer_Request
A
"1m"

Produce_Batch
Customer
Nostart

Register_Request
Secretary
Start

Request
REPEAT 10

Request

Every_hour
Some hints on GRAPES-BM in simulation 83

•
•
•
•
•

84

•
•
•
•
•

Every_hour is the simplest timer with Repetition("1h”). If the technological task Transfer_request
were not present, all ten requests would arrive in a burst. The performer A is a “technological
performer” introduced just to regulate the rate of arrival of requests (it must be present in ORG
as one instance), otherwise requests again would arrive in burst. If the Request is used to start a
transaction, the NOSTART option must be added to Produce_batch (as it is not the real start of
the transaction), and the Start option must be added to the first real task of the transaction
(Register_Request in this case), since the default transaction would be inappropriate. Another
possible solution would be the use of counters (see BM Language Guide [Part 2], section 18.6).

7.1.2 Using spontaneous events

Sometimes it is not desirable to introduce explicit timers in a modeler's BP diagram, where some
processing is assumed to start from an external task. There is a possibility to hide the timer inside
the TD of another task, using the spontaneous event concept.

Let us consider the initial fragment of the Office BP diagram, just as it was presented in Figure.
5.8 of the BM Language Guide Part 1.

Figure 7-5: Original start of Office

Now we will not introduce the timer Regularly. Instead of that, the TD diagram of
Register_Query is modified in the following way (the BP remains unmodified this time!)

Register
Paper based

Analyse_Query
Secretary

Register_Query
Secretary

Send_Query
Customer

Query

Query
Chapter 7

Figure 7-6: Modified TD of Register_Query

Actually, the definition of the timer Regularly is attached to the event Query. And the effect is
literally the same as if the timer Regularly were used. The events Query are generated “on the
spot” and inserted in the queue Query of this same task, are the further actions are as usually.

The syntax of the Repetition or Time specification for a spontaneous event is literally the same
as that used in the Event Table.

The spontaneous event option is frequently used in combination with an unnamed external task
in a BP diagram (see Figure 2.7).

Figure 7-7: Typical start with unnamed task in BP

Note: Customer is the performer of the task, the name is empty.

If a name is not assigned to the external task, the spontaneous event option in the next task's
TD is the only way to make such a construct “work”.

Spontaneous events can only be used for elementary tasks (i.e. non-refined tasks). The other
requirement is that the appropriate input arrow must be present in the BP diagram. As a rule,
it comes from an inactive task (unnamed, or named external without timer attached).

7.2 Model consistency issues

Though any business should be consistent from a pure modeling point of view, in simulation
the consistency issues are far more important.

Send_Query

Task : Register_Query
Performer :
Secretary

RegisterAnalyse_Query

Query

Query
REPETITION(EXPONENTIAL("1h:30m"))

Customer

Register_Query
Secretary

Query
Some hints on GRAPES-BM in simulation 85

•
•
•
•
•

86

•
•
•
•
•

7.2.1 Structure and event connection consistency

An introduction to consistency checking was presented in section 3.1, but a few more issues
should be discussed in greater detail.

When building simulatable models and, especially, when modifying them, the following general
recommendations apply:

• Keep the mode Auto BP�TD turned “on” in the Options/Settings (this is the default
setting).

• After some manual-editing of TDs (i.e. via the TD diagrams themselves), run the command
BM tools/BP->TDs on the subtree containing the diagrams, to ensure that referenced tasks
in TDs are still in accordance with the BP.

• When model building is completed, use the BM tools/Delete events unused in BPs either
for the whole model (From all TDs), or for the relevant subtree.

• Apply BM tools/Delete unused tasks to remove surplus TDs from the model tree, which
may have been created by temporarily naming task occurrences in BPs incorrectly.

These measures to a large extent should guaranty the structural consistency of a business model,
except that it is very easy to forget to correct appropriately the incoming or outgoing event in
the refinement BP after corrections in the upper level. This must be done manually.

The syntactic analysis of the model, among other things, reveals inconsistencies between BP and
TD diagrams (both upwards and downwards in the model hierarchy). No messages are
generated on surplus references or events in a TD, which are not used in the occurrences of this
task in BPs. You should react to all messages produced by the syntactic analysis.

When there are no messages from analysis, apply BM tools/Check consistency (to the entire
model or submodel). This checker checks only upgoing/downgoing links between BP levels,
both for events and timers. An event or timer present in a parent BP, but having no continuation
in the refinement, is reported as an error. This always should be corrected. On the other hand,
surplus references in the refinement BP, having no continuation one level up, are reported as
warnings. And there is one situation, when such warnings are given also for a valid model.
Namely, it is when two or more occurrences of the same task have a slightly different
environment, e.g., in one of occurrences the task is triggered by e1, and by e2 in another (with
the triggering condition e.g., e1 OR e2). So, when a consistency check warning is present, check
in each case what it is actually is pointing to.

The next step is the preparation for the simulation. This step produces a slightly different view
on the model, as the model is “expanded” logically converting it from a hierarchical model to a
flat model. Any top level (primary) task having a BP just under it is used as a basis for expansion.
And any task in this expansion, which in turn has a BP under it, is expanded further. The leaves
of this expansion are the true elementary tasks, which are the active elements (senders/receivers
of events) during the simulation. During the preparation, a check is performed to ensure,
Chapter 7

whether an event sent by an elementary task has at least one receiver, if not, a warning is
generated. And vice versa, any potential input queue of an elementary task is checked to ensure
it has at least one event supplier. If not, the queue is deleted from the model, and a warning is
generated.

A practical consequence of all this is that when a warning is present in a consistency check, it is
duplicated in the preparation check. But there may be more warnings in preparation (on the
basis of TDs), and again, sometimes a warning is issued for a valid model (the same case of two
non-identical occurrences of a task). Preparation-time messages look different, due to the
difference in context. Try to find out on which task boundary the event named in the message
has a discontinued link (the fault may lie either in a BP or TD diagram). The cause may be a
surplus or missing referenced task/event pair, including a surplus referenced task in an
elementary TD.

Any remaining warnings are not fatal for simulation, they only signal that some event(s) may
not travel as intended.

Note, that the expansion of the task tree is also the source of the long task qualified names
(visible in messages, Inspect and Options boxes and Trace browser tables). You only have a real
need to use qualified names in the case of more than one occurrence of a task with a refinement
- then you have to distinguish between elementary tasks repeated in two contexts. Otherwise,
only the last name matters.

7.2.2 Consistency of properties between BP and TD diagrams

Another issue of importance for simulation is the consistency of task properties (triggering condition,
performer expression, duration, decision definition, output event and SET/REPEAT specification)
between task appearances in TD and BP diagrams. When building a model, you most probably used
BP diagrams to enter or modify the task properties, which are in turn automatically entered in the
corresponding TD diagrams. When preparing a model for Simulation, the Simulator takes into
account only the properties within the task's unique TD diagram. Properties that appear in a task's
occurrence in a BP are ignored with the exception of properties like START or NOSTART which
appear only in the BP.

The syntax analyzer in V.4.0 delivers some support for BP/TD consistency. It checks during the
analysis of BP diagrams, that “vital” elements:

• triggering condition

• performer expression

• duration

• decisions containing formulas or probabilities
Some hints on GRAPES-BM in simulation 87

•
•
•
•
•

88

•
•
•
•
•

are equivalent to those found in the BP/TD pairs.

How to solve the consistency problem during model design? Rely on BP editor which
automatically updates contents of TD diagram, when you save a BP diagram, where properties
have been modified for the corresponding task occurrence. To enable this, keep the option Auto
BP�TDs on (by default, it is on). If you are not sure, use BM tools/BP�TDs once more. If
you have manually modified the task properties in its TD diagram, and then open an instance
of this task in a BP diagram, a message appears “Restore <property> expression from TD”. The
value for the property as it appears in the TD will be display, and you have the choice of copy
the value from the TD to the BP or not.

Special case: if you completely remove (i.e. delete) a property like the triggering condition in
the task occurrence in BP, the corresponding property in the TD is not modified upon saving
the BP. Neither is this done upon performing the BP�TDs command. If you really want to
remove the property, you have to do this manually in both places.

Special care should be taken for tasks with more than one occurrence. It is futile to specify
different values for the same property in two occurrences of the same task. The TD of the task
will only contain the value you entered last.

Example. You may wish to create two occurrences of the task Pump_Gasoline

Figure 7-8: Incorrect usage of two occurrences of a task with different performers and task's TD

Super

Start_Pump
Customer AND Super_Pump

Regular

Pump_Gasoline
Super_Pump

Choose_Gasoline_Type
Customer

Pump_Gasoline
Regular_Pump

Start_Pump
Customer AND Regular_Pump

Customer_Arrives_At_Station

Ready_To_Pump

Customer_At_Pump Customer_At_Pump

Ready_To_Pump

Start_Pump

Task : Pump_Gasoline
Performer :
Regular_Pump OR
Super_Pump

Ready_To_Pump
Chapter 7

and that they will have two different performers in simulation. What has actually happened in
the example above is that the performer for Pump_Gasoline will be taken from the TD on the
right (i.e., any pump available at that moment will be used) defeating the purpose of the
distinction. The only solution in such cases is - introduce two different tasks Pump_Normal and
Pump_Super in this example. This illustrates the fact that when you need two or more
occurrences of a they must be either truly identical and share a common TD, or you need to
include two different tasks, each with its own TD diagram.

7.2.3 Consistency between ORG diagram and performer expressions in tasks

One more type of consistency required for a simulatable model is the consistency between
element definitions in ORG and references to them in performer expressions of tasks. This
problem was very briefly discussed in 2.3.

The only thing the syntax analyzer checks in performer expressions (besides their local syntax)
is whether the performer elements are valid references to elements of the ORG diagram and
whether competence names are present in the CMP table. All other discrepancies may only be
found during simulation.

The first and very common inconsistency, which was already mentioned in 2.3, is the performer
availability disabling the other triggering context of a task. The simplest case is that mentioned
in 2.3, when the timer and performer availability are incompatible producing in end effect no
valid triggering condition.

Figure 7-9: Availability conflicting/incompatible with timer

But there are also other situations:

• two performers in an AND pair, having no common availability period,

• events from neighboring task arriving only in a period of inactivity (strictly speaking, this is
definitely an error).

Regular
90 % EXCLUSIVE

Forward_to_Chief
AND
Secretary
"1m"

Analyse_Query
Secretary
"4m"

Query

At_5_PM

Office

Chief
Availability : "*.*.* (10:00-14:00)"

Secretary
Availability : "*.*.* (09:00-16:00)"

Heater

PC
Some hints on GRAPES-BM in simulation 89

•
•
•
•
•

90

•
•
•
•
•

The other problems include

• requiring too many performers for some “special” task (more than are defined in the ORG
diagram),

• requiring incorrect/inappropriate performer and competence combinations.

In any case, when tasks do not start and the triggering condition is true, the problem can usually
be found among the performers. Frequently, it is not a model error, but the unexpected
unavailability of some performer. In cases where you can't see an evident inconsistency, use
dynamic debugging (see section 8).

7.3 Transactions in simulation

The concept of the transaction is covered in sufficient detail in the BM Language Guide (Part
1, section 9). We present here only some transaction details, specifically for simulation.

7.3.1 Common pitfalls related to merge conditions

The concept of the transaction is very essential to GRAPES-BM. It is always present in your
model, even when you don't actually think about it. Sometimes, this may invoke some
simulation problems, causing the model or part of it to stop unexpectedly.

Nearly all such cases are related to the merge condition, automatically being added to any
AND-type triggering condition. It requires that, if two events together trigger a task and both
belong to the same level of transaction (i.e., to transactions having the same name), then they
both must belong to the same transaction instance (i.e. have the same TID value, see p. 45 and
following in the BM Language Guide).

Let us consider an example - a slight modification of the office example (Figure 7-10 shows the
relevant part of the BP).
Chapter 7

Figure 7-10: Non-starting task - case 1

In this modification, no more than 14 queries are to be forwarded to Chief per day, but the
forwarding time is limited only by secretary’s working hours (to remove unused events
Forward_one from the queue after 6 PM, this event definition must have persistence interval
“1h”). This model does not work, since no instance of Forward_to_Chief ever starts, though 14
instances of the event Forward_one are in queue (from 5 PM till 6 PM each day). Why?

The problem is that the timer At_5_pm now also starts a new transaction instance (also named
Query_Processing, because it is in the same BP diagram), as the timer Regularly has always been
doing. The difference from the standard version of Office is, that the task Start_batch is triggered
by the timer alone. Consequently, the event Forward_one has its own unique TID, as does the
event Query, and these TID values are never the same (to each instance a new unique TID is
assigned). As a result, the merge condition is always false, and Forward_to_Chief never starts.

The solution is very simple: add the NOSTART option to task Start_batch, ensuring that no
TID is assigned to Forward_one.

Register
Paper based

Forward_Immediately
Secretary

Urgent
10 % EXCLUSIVE

Regular
90 % EXCLUSIVE

Analyse_Query
Secretary
"4m"

Register_Query
Secretary
"3m"

Send_Query
Customer

Forward_to_Chief
AND
Secretary
"1m"

Assess_Query
Chief
"5m"

Start_batch
Query

Query

Query

Query

Regularly
Query

Query

Forward_one
REPEAT 14

At_5_PM
Some hints on GRAPES-BM in simulation 91

•
•
•
•
•

92

•
•
•
•
•

Figure 7-11: Case 1 corrected

Now only the timer Regularly is able to start transactions and no merge condition is checked at
the triggering of Forward_to_Chief.

The conclusion: whenever you have two or more transaction-generating branches merging in
a BP, all of them, except one, must have a NOSTART at the beginning. Another solution would
be the NOTID option at one of the events arriving in the meeting point (signifying that the
TID should be ignored), but the NOSTART solution is better as a rule (see 7.3.2).

The following shows several typical cases involving two transaction starters:

Situation Representation

two timers

Table 7-1: Typical cases involving two transaction starters

Register
Paper based

Forward_Immediately
Secretary

Urgent
10 % EXCLUSIVE

Regular
90 % EXCLUSIVE

Analyse_Query
Secretary
"4m"

Register_Query
Secretary
"3m"

Send_Query
Customer

Forward_to_Chief
AND
Secretary
"1m"

Assess_Query
Chief
"5m"

Start_batch
Nostart Query

Query

Query

Query

Regularly
Query

Query

At_5_PM

Forward_one
REPEAT 14

&

Chapter 7

A second type of transaction problem is related to feedback arrows. Look at another simple
example

timer and event from the upper level:

two events from the upper level

spontaneous event instead of timer, and any other
transaction starter

Situation Representation

Table 7-1: Typical cases involving two transaction starters

&

&

&

Some hints on GRAPES-BM in simulation 93

•
•
•
•
•

94

•
•
•
•
•

Figure 7-12: Non-starting task - case 2

Here the customers have to present their queries personally. They arrive and wait in queue at
the office doors (the office is so small that only one customer can be served at a time). The first
customer in the morning is asked in by the secretary at the start of the working day (the event
Next from the task Invite_first, see also the NOSTART option in this task). The secretary invites
the next customer to enter, when the current customer has been processed (the same event Next
also from the task Register_Query). To be absolutely precise, the event Next must have a limited
persistence (equal to “9h”), otherwise the event from the last customer from the previous day
would still be active the next day.

However, the problem lies somewhere else. Each customer arrival starts a new transaction. The
first customer would be served. But the second would not be at all - the task Enter_Office starts
only once. The problem is that the event Next issued by the task Register_Query has the TID
value of the previous transaction instance, while the event Customer_and_Query has the TID of
the new transaction. No merge occurs.

The only solution is: add the NOTID option to the event Next in the task Register_Query.

Arrive_to_Office
Customer

Leave_Office
Customer

Invite_first
Secretary
Nostart

Enter_Office
AND
Customer

Present_Query
Customer

Register_Query
Secretary

Analyse_Query
Secretary

Query

Query

Regularly

Query

Start_of_day

next

Customer_and_Query

next
Chapter 7

Figure 7-13: Case 2 corrected

The conclusion: whenever there is a feedback arrow or loop, i.e. a transaction “passes the baton” to
the next instance of the same transaction via an event, the NOTID option must be added to that
event arrow.

The two described situations are the most typical ones, where the merge condition in triggering
can create problems, unless recognized and preventative measures in the form of NOSTART or
NOTID are used.

Another more or less typical situation is a “long-lived process” which must receive events from
many transaction instances. Typical example of such long lasting processes is the memory
emulation example in the BM Language Guide ([Part 2], section 18). The “Registrator process”
(see BM Language Guide Part 2, Fig 18.1 and Figure 7-14 here, with load generator added),
which is based on the task Register_Expenses and the feedback event Total, must cooperate with
all other transaction instances during the day (receive the Activity_Cost from them). To solve the
problem either NOTID must be applied to all feedback loops for the event Total (the solution
to be seen in Figure 7-14), or NOTID must be applied to all entrances from transactions - to
the two event arrows Activity_Cost in the example (another possible solution). The latter
solution permits the “Registration process” also to be a transaction (see more in 7.3.2).

Arrive_to_Office
Customer

Leave_Office
Customer

Invite_first
Secretary
Nostart

Enter_Office
AND
Customer

Present_Query
Customer

Register_Query
Secretary

Analyse_Query
Secretary

Query

Query

Regularly

Query

Start_of_day

next

Customer_and_Query

next /NOTID
Some hints on GRAPES-BM in simulation 95

•
•
•
•
•

96

•
•
•
•
•

Figure 7-14: Memory example

Whenever you have suspicions that a task does not start because of the merge condition, add
NOTID to all but one event necessary to trigger a task with the AND-condition. See the next
section on how to preserve transaction statistics validity as well. See in section 8 how dynamic
debugging can help you to clarify the situation.

7.3.2 Adapting transactions for statistics

Apart from something causing the model to stop, transactions are excellent for easily obtaining
time/cost statistics on a business task and its subparts.

The first example of this sort was already shown in the Office example (see 6.1.1). An easy way
of obtaining cost and duration statistics for processing one query in the Office was
demonstrated. The statistical items cost and processing time for the transaction task
Query_Processing are easily obtainable.

Activity_1
performer_1

Activity_2
performer_2

Regular
IS_TRIGGERED_BY(Cost) &
IS_TRIGGERED_BY(Total)

Receive_Order
AND
supervisor

Evening
IS_TRIGGERED_BY(Five_pm) &
IS_TRIGGERED_BY(Total)

Register_expenses
Nine_am OR (Activity_Cost AND Total) OR
(Five_pm AND Total)
accountant

Morning
IS_TRIGGERED_BY(Nine_am)

Deliver_Parts
AND
supervisor

Receive_Expenses_report
supervisor

Submit_Order
client

Receive_Parts
client

Nine_am_to_Five_pmOrder

Order

Part

Part

Total

Five_pm_to_Six_pm

Five_pm

Part

Total /NOTID
SET VALUE = 0

Activity_Cost
SET VALUE = 10

Activity_Cost
SET VALUE = 15

Nine_am

Regularly

Total /NOTID
SET VALUE = Total + Activity_Cost
Chapter 7

To get exactly the statistics you want, some care must be taken when building the model. In the
simplest cases, such as our Office, the only natural way to describe the real business process is
by using only one BP diagram, which results in one formal transaction corresponding in our
case to the processing of a query in the office.

To achieve such a situation in any simulation model, the following rules should be adhered to:

• Only one kind of transaction may be accounted for in one BP diagram. In particular, in a flat
model, only one real world transaction may be accounted for.

• Make sure that there are no unintended transactions appearing in your BP diagrams. Any
task sequence not belonging to the mainstream transaction and started only by a timer or a
referenced task should be supplemented by NOSTART at its first task, even if it causes no
merge problems, otherwise the transaction statistics will probably be corrupted. At the same
time, alternative start points for the main transaction are OK.

• Make sure that there are no activities outside the real world transaction to be accounted for
at the beginning of the transaction in your model. Tasks performed by external performers
(clients, customers etc.) as the preparation for the main activity (e.g., Prepare_Order) are
harmless in the gathering of statistics if they have zero duration and cause no performer-based
delays. If some preparatory activities are to be excluded from the transaction, use the
NOSTART option in the first external task being part of the system load generator (see 7.1)
and the START option in the first task of the chain which actually belongs to the transaction.
There may be more than one task containing START if there are alternative chains.

• An analogous situation exists for the ends of transactions. The formal transaction ends, when
there are no more tasks or events bearing its TID. Remember that even one event of the
transaction held up aimlessly in some queue prevents the transaction from closing and
completely distorts the statistics. Use the END option in a task to affirmatively end the
transaction. But remember that END is aggressive - any concurrent task instance belonging
to the transaction remaining anywhere else in the transaction will also be discarded
immediately. If there are several merging task chains in the transaction, don’t use END before
the merge point. In some rare cases, a fictitious completion task receiving control flows from
all real ends of independent chains must be added, and then this task contains the END
option.

In multi-level models (having more than one BP), there are a number of additional
considerations. By default, along with the main transaction corresponding to the top BP
(certainly, if this task chain is started by a timer or a spontaneous event), each refinement level
also defines its own transaction (named after the corresponding refined task).

Let’s take one more example from the BM Language Guide - the Structured office (Figs. 6.1-6.6
in Part 1). For ease of reference, we reproduce here only the top BP (Fig. 6.2 in Part 1), with
only one alteration - timer Regularly has been added.
Some hints on GRAPES-BM in simulation 97

•
•
•
•
•

98

•
•
•
•
•

Figure 7-15: Structured Office - top BP

The timer Regularly, as always, starts the main transaction Query_Processing. But now there are
also transactions Register_Forward_Query, Prepare_Answer and Send_Answer.

As a rule, any refinement level is a transaction of its own, since the first task in a refinement is
normally started by events coming from the upper level via references. In this case all sub-
transactions do correspond to natural sub-activities in query processing. Therefore it is
interesting to have time and cost statistics on all four transactions, and the Simulator will
provide all this automatically.

If you are not interested in partial statistics for some part of a model, ignore them. In rare cases,
when interpreting a refinement level as a transaction negatively affects the model, use
NOSTART for all entrance points to it.

Usually, the main practical problem in a large model is to refine the business system in both a
natural way and in a way that all statistically interesting groups of activities get their own BPs
and, consequently, transactions. If all parts are completely structured (nested), there should be
no problems.

It is slightly more difficult to use transactions for accounting non-nested (i.e., one not being part
of another) activities with different life spans or time frames. Let us look for a moment at the
memory emulation example (Fig. 18.1 from the BM Language Guide Part 2 and Figure 7-14

Prepare_Answer
Chief & Secretary

Send_Answer
Secretary & PC

Register_Forward_Query
Secretary

Send_query
Customer

Receive_Answer
Customer

Archive

Register
Paper based

Query

Query

Query

Answer

Draft_Answer

Regularly
Chapter 7

here). Originally, only the production of parts (starting with Submit_Order) corresponds to a
transaction. If we want the registering of expenses also to be a valid transaction, a BP level must
be devoted to it.

Figure 7-16: BP for Registering level (refinement of task Register_expenses)

Then its timer Nine_am starts the transaction and the task Receive_Expenses_report ends it (it is
natural end, since the event Total is no longer preserved). Let us remark that the Activity_Cost
and Five_pm do not start a transaction instance here, since they trigger only together with Total.

Figure 7-17 shows the modified top BP. Certainly, only the NOTID solution for both
Activity_Cost events is now valid in the top level BP.

Evening
IS_TRIGGERED_BY(Five_pm) &
IS_TRIGGERED_BY(Total)

Morning
IS_TRIGGERED_BY(Nine_am)

Activity_1,
Activity_2

Register_expenses_details
Nine_am OR (Activity_Cost AND Total) OR
(Five_pm AND Total)
accountant

Receive_Expenses_report
supervisor

Regular
IS_TRIGGERED_BY(Activity_Cost) &
IS_TRIGGERED_BY(Total)

Total

Nine_am Five_pm
Activity_Cost

Total
SET VALUE = 0

Total
SET VALUE = Total +Activity_Cost
Some hints on GRAPES-BM in simulation 99

•
•
•
•
•

100

•
•
•
•
•

Figure 7-17: Modified top BP

The NOTID for Activity_Cost is still necessary, otherwise they would “contaminate” the lower
level objects with different upper level TIDs, invoking a merge clash.

It should be noted that frequently registering total expenses and similar jobs can be modeled in
a more elegant way using global variables (see 7.7)

One more special case of transaction starts. So far the real start was at the top level. Let us make
a small modification to the structured Office. Namely, the timer Regularly (and task
Send_Query) is shifted to one level below (the original version is more natural, anyway).
Figure 7-18 show the initial parts of the top BP and that for Register_Forward_Query.

Activity_1
performer_1

Activity_2
performer_2

Deliver_Parts
AND
supervisor

Register_expenses
accountant

Receive_Parts
client

Receive_Order
AND
supervisor

Submit_Order
client

Order

Part

Activity_Cost /NOTID
SET VALUE = 15

Activity_Cost /NOTID
SET VALUE = 10

Order

Part

Five_pm_to_Six_pm

Nine_am_to_Five_pm

Part

Regularly
Chapter 7

Figure 7-18: Office with explicit START (to the left - top BP, to the right - BP of Register_Forward_Query)

The task Send_Query must have the explicitly named start option Start Query_Processing,
Register_Forward_Query, in order to start the top level transaction simultaneously (the second
element in the argument list is just for readability, Start Query_Processing would suffice).

7.3.3 Aggregate processing and transactions

In the simplest cases, elements of a transaction are processed independently of other instances
of the same transaction (expect that they compete for the same resources-performers). But in
some cases it is not so simple. Sometimes several instances of a transaction must undergo joint
processing.

Looking at an example of this, in a larger office it would seem obvious that the answers are
produced by assistants and the Chief only checks and signs them, before passing them to
secretaries. To schedule his or her time better, the Chief only does this in batches of 10.

Then the BP diagram would contain the following fragment

Prepare_Answer
Chief & Secretary

Register_Forward_Query
Secretary

Customer

Query

Query
Register_Query

Secretary
"1m"

Analyse_Query
Secretary
"3m"

Send_query
Customer
Start Query_processing,Register_Forward_Query

Query

Query

Regularly
Some hints on GRAPES-BM in simulation 101

•
•
•
•
•

102

•
•
•
•
•

Figure 7-19: Aggregating answers

The task Check_and_Sign_Answers can start when it has got 10 answers (consequently, produced
by 10 instances of the transaction). Remember that for fixed-group and ALL-group triggering,
no merge condition is checked, the TIDs of Draft_Answer_and_Query are ignored and the task
Check_and_Sign_Answers belongs to no transaction instance. The outgoing events from this
task would have no TIDs at all, except in the case which is present here - the outgoing event has
the same name as the incoming one. Then there is an outgoing instance for each incoming
instance, and the TID value is passed to it. Thus in the example the transaction just continues
as an individual one after this artificial “bottleneck”, the processing time of the transaction is
OK, only the task Check_and_Sign_Answers is excluded from transaction cost (but the
transaction time will be computed correctly since it is simply obtained from the start/end
moments).

The situation would be more complicated if two or more tasks were necessary to process the
batch. The next figure illustrates this situation, along with solutions to this problem.

Prepare_Draft_Answer
Assistant

Check_and_Sign_Answers
<10> Draft_answer_and_Query
Chief

Type_Answer
Secretary

Draft_answer_and_Query

Draft_answer_and_Query
Chapter 7

Figure 7-20: Aggregating answers - more complicated

The events Batch_of_10Answers have no TIDs, and so have Signed_Answer generated in tens
after the task Sign_Answers. The number of instances of Signed_Answer is the same as that of
original transactions, but no TIDs are preserved, consequently they belong to no transaction.
The event Query from Prepare_Draft_Answer to Type_Answer is introduced with the only goal
to preserve the original TIDs of transactions. In the task Type_Answer they are again joined, with
the joined TID passed to the outgoing event. Thus transactions are preserved, only the cost of
the two tasks is not accounted for.

7.4 Using simulation parameters (SP) table

GRAPES-BM has one more facility for making simulation experiments easier - the Simulation
Parameters (SP) table. This is a table containing named constants (parameters), where beside
each name, its type and value are given. The constant values held in this table are assumed to be
those which are most likely to require some modifications during the simulation experiments
with the model. There are a number of benefits from holding such named constants in the SP
table

• you can give symbolic names to values which are used repeatedly in several places of the
model,

• the values in the SP table can be modified during the simulation session, without repeating
the analysis and preparation of the model (which would be necessary if you made changes to
the ET table for example),

Prepare_Draft_Answer
Assistant

Check_Answers
<10> Draft_answer_and_Query
Chief

Sign_answers
Chief

Type_Answer
AND
Secretary

Batch_of_10_answers

Draft_answer_and_Query

Query

Signed_answer
REPEAT 10
Some hints on GRAPES-BM in simulation 103

•
•
•
•
•

104

•
•
•
•
•

• you can have several saved SP table value sets within the same model, corresponding to a
number of different scenarios you have built for evaluation via simulation.

Reference to the SP table in the model tree can be found in its top row, to the far right of the
BM symbol.

Figure 7-21: Model tree with non-empty SP table

The syntax of the SP table is very simple: it contains four columns with titles: Parameter name,
Data type, Value and Description. Parameter name is any valid GRAPES-BM identifier. Data
type may be one of

• INTEGER

• FLOAT

• DURATION

• TIME

BUSINESS MODEL OfficeBM VT ET CMP SP

OfficeORG

TYPE Attr1ATR

TYPE Tot_atrATR

TASK Query_ProcessingBP TD AT PD

TASK Analyse_QueryBP TD AT PD

TASK Analyse_ReviewBP TD AT PD

TASK Answer_questionBP TD AT PD

TASK Archive_AnswerBP TD AT PD

TASK Assess_QueryBP TD AT PD

TASK Coffee_BreakBP TD AT PD

TASK Find_reviewerBP TD AT PD

TASK Forward_ImmediatelyBP TD AT PD

TASK Forward_to_ChiefBP TD AT PD

TASK Prepare_Draft_AnswerBP TD AT PD

TASK Receive_AnswerBP TD AT PD

TASK Register_QueryBP TD AT PD

TASK Send_AnswerBP TD AT PD

TASK Send_QueryBP TD AT PD

TASK Send_QuestionBP TD AT PD

TASK Send_to_CustomerBP TD AT PD

TASK Type_AnswerBP TD AT PD
Chapter 7

Value is a valid constant of the corresponding type (see [1], section 13). For integer and float
constants the “-”sign is allowed here, for floats values like 4.0 are required. Only direct constants
are permitted here, and not so called “constant expressions”. Figure 7-22 shows a possible SP
table for the Office example, where the following values would be readily modifiable during
simulation

• the persistence interval for the timer At_5_pm (Persistence_of_5_pm),

• the duration of the task Find_Reviewer (Duration_of_Find_Reviewer),

• the mean value of the exponential distribution defining the interval of the timer Regularly
(Mean_Query_Interval),

• the value of the cost per hour for the Reviewer (Rev_Cost).

Figure 7-22: Example of an SP table

It is impossible to demonstrate the multiplicity of uses from such a small example.

Formally, the named constants defined in the SP table may be used (referenced) in the following
components of a business model

• interval of a Repetition timer in ET table (but not in specifications of Time timers),

• transfer time definition in the ET table,

• persistence interval definition in the ET table,

• performer efficiency in ORG diagram,

• attribute values and expressions in ATR table and TD diagram,

• task duration definition in TD and BP diagrams,

• decision formulas in TD and BP diagrams,

• SET expressions for output events in TD and BP diagrams,

• REPEAT specifications for output events in TD and BP diagrams,

• WHERE conditions for triggering in TD and BP diagrams,

• spontaneous event Repetition specification in the TD diagram.

Duration_of_Find_
Reviewer

DURATION "10m"

Mean_Query_Interval DURATION "1h:30m"

Persistence_of_5_pm DURATION "45m"

Rev_Cost FLOAT 4.0

Parameter name: Data type: Value: Description:
Some hints on GRAPES-BM in simulation 105

•
•
•
•
•

106

•
•
•
•
•

The other numeric components of TD and ORG diagrams like PRIORITY and Number of
Instances require direct numeric entries, constants from the SP may not be used there. The same
type rules as apply to direct constants should be observed in any usage of values from the SP
table.

The next Figure 7-23 shows the ET table for the Office, where the two relevant names from the
SP table are used. Actually the SP table could have been used in section 6.4 during experiments,
to make life easier.

Figure 7-23: ET table of Office with references to SP table

With respect to the usage of SP table elements in simulation, if you don’t change the SP values
via the Inspect box in the Simulation window, the values are the same as those visible in the SP
table.

But you can also assign other values to these names during the simulation session. To do this,
press IS, and the Inspect box opens with the SP parameter page on top. There you see the current
values of all parameters (named constants). Figure 7-24 shows the SP values for Office during
simulation.

Answer Message

At_5_PM Timer TIME("*.*.* 17:00") Persistence_of_5_pm

Copy_of_Answer Message

Draft_Answer Message

Query Message

Query_and_Review Message

Question Message

Regularly Timer REPETITION(
EXPONENTIAL(
Mean_Query_Interval))

Review Message

Reviewer_Address Message

Event name: Category: Data type: Persistence interval: Transfer time: Description:
Chapter 7

Figure 7-24: SP values viewed via Inspect

Now you can click on any visible value, change it, and then press the Accept New Values button
(this button appears only after a value is selected). From now on, namely in the next run, the
new value will be used (and not the original unchanged values that are still in the SP table). You
are guarded against entering syntactically incorrect values during the entry of the value.

The values of SPs can be modified any time you pause the session. If you are just experimenting
with model behavior, continue the run after making the changes. But if you are gathering
statistics, it is a good practice to Reset the session after you have modified an SP value.
Otherwise you get a mix of statistics for the old and the new simulation parameters.

When you have found a reasonable set of values for SPs, it is worthwhile to save it. To do this,
enter the same Inspect box, SP parameters page. Press the Save button and enter a name for the
saved set of values. Namely this way you can produce several parameter settings for the same
business model. Now when you are in another session, you can enter the SP parameters page
before the actual run, press the Load button, and select one of the saved sets. You see then the
loaded values, and after pressing Accept New Values, these values are used by Simulator (and
not those visible in the SP via GRADE editors). Remember that modifying value sets in SP via
the Simulator never affects the values visible via the SP table editor. If you are just fine-tuning
the model behavior, it is recommended that you modify also the SP values via the table editor
to the best-fit values found during simulation. On the other hand, if you have several valid value
sets, only one of them may be kept visible in the SP table.

Saving value sets for SP has nothing to do with saving session parameters, these are completely
different things.
Some hints on GRAPES-BM in simulation 107

•
•
•
•
•

108

•
•
•
•
•

7.5 Using show boxes

One more simulation specific GRAPES-BM element is the show box. It is an element which
may be defined in any BP diagram. The sole function of this element is to display defined values
during animation.

When a show box is being defined in a BP diagram, its syntax is the following

Figure 7-25: Syntax of show box

The title is any text by which the show box should be identified during animation. Usually just
the BP name and task name are sufficient for uniquely identify a task. The task may be from the
current or any other (even invisible) BP diagram. The qualification is necessary in case of
multiple task occurrences. In case of several occurrences of the same task in the same BP diagram
the tag may just be used to distinguish these occurrences (not only for show boxes, but also in
statistics). The attribute name must be an attribute defined for the given task.

During animation, with the relevant BP placed in the animator window, whenever the specified
task attribute is updated, the new value appears in the show box (see example in Figure 7-26,
showing the value 1 for the attribute Times). It is visible there until the next update.

<Title>
{<TD_name>.}*<BP_name>
<task_name>[.<tag>]
<attribute_name>
Chapter 7

Figure 7-26: Part of animator window with a show box

Only user defined attributes of a task may be displayed in a show box. The system attributes like
queue length are displayed via basic animation facilities.

Don’t use show boxes for serious on-line viewing of statistics - animation is too slow to obtain
statistically significant results as the sessions are never of sufficient length. Show boxes should
mainly be used for a clear system presentation of system dynamics.

For on-line viewing during statistics gathering, use the user defined fields and gauges in the
Simulator window; this doesn’t slow down the execution (see section 5.2). However, only system
attributes (instance count, queue length etc.) may be displayed this way.
Some hints on GRAPES-BM in simulation 109

•
•
•
•
•

110

•
•
•
•
•

7.6 Data in user attributes and events

7.6.1 General data-based “programming” in GRAPES-BM

Business models for Business Process Re-engineering (BPR) projects in office or production
environments usually tend not to be very data intensive. However, the GRAPES-BM language
permits one to describe in a program-like form the precise behavior of various systems, with the
goal of precise behavior simulation (with the same end result as that of more traditional
simulation languages). Such applications of GRAPES-BM heavily rely on the data content in
events, decisions and attributes. Some typical constructions of such “BM-programming” are
included in the BM Language Guide (Part 2, Section 18).

However, some data usage is to be found also on BPR-oriented models. First, these are user
defined attributes of tasks of the following kind - special partial costs or partial durations. For
example, these could be costs associated with verifying or “checking” the validity of a task result
defined by the task attribute Checking_Costs. This attribute can be defined in some attribute
table, e.g., At1 and with the type float without default value). Then the relevant tasks must be
of type At1 and must have the attribute Checking_Costs set to the necessary value in their TDs.
All transaction tasks then must have another type, e.g. At2. In this attribute table, another
attribute should be defined, e.g., Total_Checking_Costs, with the formula
SUM(Checking_Costs). Then for all transactions the totaled checking costs observable via their
user defined attribute statistics will be available automatically. Actually, such a usage of attributes
for partial costs is just a generalization of the scheme used for counting repetitions in the Office
example - see 6.5 on how to do it.

Partial durations may be summed in a similar way, however, task overlapping may not be taken
into account.

In some cases, data could also be associated to events. to specify the amount produced for some
kind of production activity for example. There could be an event Components_Produced with a
record datatype r1 having a field amount with type integer.

Then various methods of summing up the amount over several instances of the event
Components_ produced can be used. One such situation is shown in the following fragment of a
BP

Figure 7-27: Summing amounts

End_of_operation

Store_Components
End_of_Shift AND ALL Components_produced

Components_produced

End_of_Shift
Chapter 7

The task Store_Components is triggered by End_of_Shift and an unknown number of events
Components_Produced. If you need an attribute of this task Total_Amount, then such a value may
be obtained by the attribute formula

Total_Amount: SUM(Components_Produced.Amount)

in the task’s TD diagram. The same formula may be used in an output event data setting.

Warning. Never use the SUM operation in a WHERE condition for triggering, the semantics
will not be what you expect. You can only specify a fixed number of events necessary for
triggering, e.g., <10> Components_Produced.

Certainly, another use of event data is in technological tasks, e.g., for defining a loop, which
iterates exactly 10 times (see BM Language Guide, section 18, Fig 18.12).

If you want to see the data contained in events and include it in statistics, you have “to copy”
the data to attributes. There is no way of directly defining automatic statistics on event data.
Instead, you have to introduce a special attribute in one of the tasks through which the event
flows (as a single unit), e.g., with the same name as the data to be averaged. For example, in the
task End_of_Operation an integer-typed attribute Amount must be introduced, and to it the
value of the amount (Components_Produced.Amount) must be assigned. Then the average value
of Amount per Components_Produced will be observable as AVG statistics on the above-
mentioned attribute.

An alternative use of event data is via export to a textual trace and post-processing in Excel. See
the next section.

7.6.2 Approaches for gathering additional statistics

If you want to obtain more statistical data in traces to be analyzed in Excel, a little
“programming” at the data level in GRADE must be done. Two styles of such programming are
possible

• using transaction attributes

• using event attributes

The transaction attributes style is applicable where the business system to be evaluated consists
of consecutive (and parallel, as a rule) groups of activities initiated by a series of external events.
Such groups of activities correspond to transactions in GRAPES-BM. Secondly, the statistical
data to be evaluated must be in one of two categories:

- sums of some numeric attributes of some tasks, such as various partial costs

- various time intervals and time moments defined by significant points in the “life-time” of
the transaction (time till requested job scheduled, the pure job execution time etc.).
Some hints on GRAPES-BM in simulation 111

•
•
•
•
•

112

•
•
•
•
•

To implement this style, several task types (ATR tables) must be defined for elementary tasks.
Each of the elementary tasks whose completion must be taken into account in the statistics,
must have one of these types. Avoid using default values in these ATR tables, rather, set explicit
values in TD diagrams. Thus you can guarantee that only those tasks, where the corresponding
attribute is deliberately set in the TD, are taken into account for the given statistics. The other
tasks with the same type will have the NULL value for the attribute, and, consequently, ignored
in statistics. The next job is to define the attribute table for the transaction to be investigated,
and the corresponding transaction task TD. The attribute table must contain an attribute for
each statistical value to be investigated. The corresponding formulas may be placed either in the
ATR or in the transaction TD body.

Two types of formulas usually appear. For summable attributes, use the scheme

TrAttr1:SUM(Attr1)

where Attr1 is the attribute actually possessed by tasks (i.e. having a non-NULL value), which
should be accounted for from the TrAttr1 point of view. A typical example of this kind is

TotTimes:SUM(times)

used already in section 6.5 to count the number of times a review is requested for a query. What
is new, is the fact that every single value assumed by TotTimes at the end of the transaction
(Query_Processing) may be registered in the trace.

A different scheme is recommended for obtaining time statistics. A task (or several alternative
tasks) which corresponds to a significant point in the transaction life-cycle must be given a
unique Time type attribute (e.g. ActivityTime). This attribute must be set to NOW in the task
body (i.e. in its TD). Be sure that if the same task type is used for other tasks as well, the attribute
has NULL value there. Then the attribute value is transferred to the transaction using the MAX
function:

RealActivityTime:MAX(ActivityTime)

Then the transaction attribute RealActivityTime at the end of the transaction will contain the
actual time point value. If you need durations, add formulas to the transaction TD such as

Interval:TimePoint1-TimePoint2

(where Interval must have the type Duration)

These formulas are evaluated at the end of the transaction, when both time values are already
defined.

Note. The chosen vertical operation MAX has no particular meaning in this case. The MIN
operation can be used as well, but MAX and MIN are the only operations permitted for the
Time data type. Certainly there may be cases, when time may be set at different points in a BP
diagram, and then you have to choose deliberately between MAX and MIN.
Chapter 7

Assume for a moment that we want to find what time (from the total Query processing time) is
spent on waiting till the Chief first assesses the query. A transaction instance naturally
corresponds to each query processed. We have to add three new transaction attributes:

• Transstart- the start of the transaction

• TStartofAnswer- the moment the Chief assesses the Query

• AnswerDelay- the interval between the two above moments.

Figure 7-28 shows the updated attribute table Tot_atr

Figure 7-28: Updated Tot_atr table

The transaction is started by the task Send_Query. So we define an attribute table Attr2 (see
Figure 7-29), which

Figure 7-29: Attr2 table

contains the sole attribute tstart. In accordance with this, the task Send_Query must have the line

tstart:NOW

added to its TD body (Attribute section).

The other critical point is the task Assess_Query. It already has a type Attr1 (for the review
number analysis). So we add a new attribute StartofAnswer to this ATR table (Figure 7-30).

Figure 7-30: Updated Attr1 table

The only task where this attribute is set, is Assess_Query - we add

StartofAnswer:NOW

to its body in the TD.

AnswerDelay DURATION

tot times INTEGER 0 SUM (times)

transstart TIME

Tstartof Answer TIME

Attribute: Type: Default: Unit: Formula: Description:

tstart TIME

Attribute: Type: Default: Unit: Formula: Description:

StartofAnswer TIME

times INTEGER

Attribute: Type: Default: Unit: Formula: Description:
Some hints on GRAPES-BM in simulation 113

•
•
•
•
•

114

•
•
•
•
•

No modifications at all are made to the BP diagram.

Now simulate the updated mode with the textual trace option on. The only element to be
recorded in the trace is End of task:Query_Processing with attribute values on. The simulation
option setting is literally the same as in 6.6. When you import the trace in Excel, you have 10
columns. Reorder the columns, so that Transstart, Transaction Duration and AnswerDelay
columns are adjacent to each other. Now you can build a line chart with the transaction start
time on the X-axis and both durations on the Y-axis (Figure 7-31).

Figure 7-31: Chart with delay of Assess_Query start and query processing time

The two lines clearly show that most of the transaction time is spent on waiting until the Chief
assesses the query.

Alternatively, you can store only the TstartofAnswer in the data, and obtain the other columns
via Excel “column arithmetic” - subtract the transaction duration (always present) from the time
stamp (transaction end) to obtain the transaction start, then obtain the delay similarly.

The event attributes style is actually based on the same principles as the counter discussed in
7.6.1. Define a record type in a model’s DD diagram, containing all desired statistical values as
fields. In the Office example, these would be the same four fields appearing as transaction
attributes in Figure 7-28. Define the ET so that all essential events - “carriers of the transaction”
have this data type. In the Office example, these would be Query, Query_end_Review, Answer.
Now at appropriate tasks the event fields are set to the appropriate values using the SET option.
For example, the task Send_Query must have the SET option for Query:

SET Transstart=NOW.

0:00:00

12:00:00

24:00:00

36:00:00

48:00:00

60:00:00

72:00:00

84:00:00

96:00:00

108:00:00

120:00:00

97.0
7.1

8
8:1

7

97.0
7.1

9
15:2

6

97.0
7.1

9
23:0

6

97.0
7.2

1
3:2

7

97.0
7.2

1
3:1

7

97.0
7.2

1
21:2

1

97.0
7.2

2
15:0

9

97.0
7.2

3
0:4

1

97.0
7.2

3
20:1

7

97.0
7.2

4
13:2

5

97.0
7.2

5
22:0

7

97.0
7.2

5
16:4

0

97.0
7.2

6
13:0

2

97.0
7.2

6
23:0

4

97.0
7.2

7
16:2

5

97.0
7.2

8
4:4

2

97.0
7.2

7
14:0

6

97.0
7.2

9
11:1

4

97.0
7.2

9
23:0

2

97.0
7.3

0
4:0

8

97.0
7.3

0
21:1

5

Chapter 7

The main problem is to guarantee that for each task, the already defined field values are correctly
passed to output events. In this simple example you can rely on the rule, that if input and output
events have the same type, the field values are passed by default. But in more complicated cases,
with several similar events triggering a task, precautions must be taken to pass the correct values,
including lengthy SET options listing each of the fields explicitly.

Finally, at the final task of the transaction (Receive_Answer in the example), you can convert the
event data to attributes (defined just for this task) and record the end of this task (not the end
of transaction!) in the trace. Alternatively, you can record (together with data) the sending of the
final event (Answer by the task Send_Answer in the example). The values will be the same.

The event data style is more flexible, in general - you can “program” most anything. But the
disadvantage is that you have to carry everything in your pocket - all the data must be passed
at each task. This can cause very large SET-options cluttering the model and making the BP
diagrams difficult to understand (unless of course you “hide” this information). In contrast to
the “transaction style”, BP diagrams here must be extended significantly, when compared to the
pure “modeler’s version”!

7.7 Use of global variables

7.7.1 When to use global variables

Global variables in GRAPES-BM should be used for a precise description of complicated
control procedures in manufacturing, finance etc. which depend on the current level of stocks
of some product, cash available etc. It is typical in such systems, that the values of “control
variables” are set and read by many different tasks. The emulation of such control variables by
event data (i.e. by methods discussed in 7.6), though possible in principle, is very cumbersome.

Another case for using variables is a large number of similar items to be managed, e.g. various
product subtypes in manufacturing. Here it is essential that global variables are the only data
elements in GRAPES-BM where arrays can be used. Access to array elements is similar to that
in traditional programming languages. A similar situation is a large number related constants,
e.g. a processing time for each product subtype. Global variables can also play the role of
constant arrays, which are impossible in SP. For simulation purposes, the actual values of
constant arrays can be imported, e.g. from Excel, at the start of the simulation session.

Global variables enable also statistical processing according to any user defined statistics
formulas. This can be done by direct programming the formulas, as in programming languages,
arrays again may be used if necessary.

Global variable facility in GRAPES-BM consists of

• Variable Table (VT) defining the variables - elementary, arrays or records
Some hints on GRAPES-BM in simulation 115

•
•
•
•
•

116

•
•
•
•
•

• assignment section in tasks, assigning values to variables

• referencing of variables in GRAPES-BM expressions - decisions, assignments etc.

The syntax of all these features is described in GRAPES-BM Language Reference Manual and in
GRAPES-BM language help. The essence of global variables is that any of them is available to
any task in the model.

7.7.2 Example of a typical use of global variables

Let us consider the simplest stock management for a company. We assume that a company
produces 10 types of products and sells them according to incoming orders. When the stock for
the requested product is sufficient to fill the order, it is filled and the corresponding stock is
reduced. An unfillable order for the sake of simplicity is rejected. But after each incoming order
has been analyzed, it is checked whether the stack for the product involved is less than the
recorder point for this product. If so, a fixed batch of this product is produced by the
production unit, and after this had been done, the stack value is increased.

To model such s scheme, four arrays are used, all having integers as elements, the number of
them being equal to the number of types of products - 10. The main array is Product_stocks. It
holds the actual value of each product stock at any moment.

The Product_stocks array is the only one which is a proper variable. Other arrays are just constant
arrays - there must be a different constant value for each product type. The array Reorder_point
contains reorder-point values for each of the products. Batch_size contains the sizes of the batch
produced for each product. One more constant array Demand characterizes the demand for each
of the products (the value is used as an upper bound in a randomized expression).

All arrays are defined in the variable table (VT) of the model. They all have the same data type
Product_array, which is an array of 10 integers. The only difference between variable arrays and
constant arrays is in their initialization - variable arrays normally are initialized by a “program
loop”, while constant arrays obtain their values from a file at the start of a simulation session.
Formally there are no syntactic differences between these two subtypes of arrays, this is just a
matter of usage. Fig.7.32 shows the VT table of the model. Besides the arrays, there are two
elementary integer variables, used as work variables.
Chapter 7

Figure 7-32: VT table of example

The array type Product_array has to be defined as an array in a DD diagram. Figure 7-33 shows
this DD diagram, where a record type T_Order to be used for messages is also defined. The
Product_array here has a fixed value 10 as its upper bound. A “changeable constant” from SP,
e.g. an integer-valued Max_Prod could be used here as well, to make the model more easily
modifiable.

Figure 7-33: Data type definitions

The next figure - Figure 7-34 shows the business process of the example. Event definitions are
shown in Figure 7-35.

Batch_size Product_array

C_Product INTEGER

Demand Product_array

I INTEGER

Product_stocks Product_array

Reorder_point Product_array

Category: Variable

Name: Data type: Value: Description:

T_Order

INTEGER
Product_type

INTEGER
Quantity

Product_array

INTEGER

1..10
Some hints on GRAPES-BM in simulation 117

•
•
•
•
•

118

•
•
•
•
•

Figure 7-34: BP diagram of the example

yes
Order.Quantity
<= Product
_stocks[Order
.Product_type]

no
ELSE

Fill_Order
Product_stocks
[Order.Product_type]
:= Product_stocks

[Order.Product_type]
- Order.Quantity

Time_to_replenish
Sales_dept

no
ELSE

Inform_Customer
Sales_dept

Ship
_Product

"20m"

yes
Product_stocks
[Order.Product_type]
< Reorder_point
[Order.Product_type]

Create_order
Customer
C_Product :=
UNIFORM(1,10);

Initialize
_stocks

Archive
_order

Sales_dept

Register_Supply
Sales_dept
Product_stocks[Supply
.Product_type]:= Product
_stocks[Supply.Product_type]
+Supply.Quantity

Produce_Batch
Mfg_dept
EXPONENTIAL("6h")

Order_fillable
Sales_dept

Order

Regularly

Order
SET Product_type=C_Product;
Quantity=UNIFORM(50,Demand[C_Product])
;

OrderOrder

Order

Order

Internal_Order
/NOTID

Rejected
_order

Supply
SET Quantity=Batch_size
[Internal_Order.Product_type];
Chapter 7

Figure 7-35: Event table of the example

We start the comments on the BP diagram with a reminder, how individual array elements are
accessed. A typical such expression is

Product_stocks[Order.Product_type],

where the product type field of the incoming message Order is used to select the relevant stock
value. Such an expression is used both in assignments and decision formulas. If the assignment
section of a task contains several assignments, they are executed one by one at the end of the task
instance, after task attribute settings and before decisions/ output settings.

The model execution has to start with the initialization of proper global variables, in our case
Product_stocks. This is done by the task Initialize_stocks, whose refinement by a BP is to be seen
in Figure 7-36.

Figure 7-36: Variable initialization

At_system_start Timer TIME(START_TIME)

Internal_Order Message T_Order

Order Message T_Order

Regularly Timer REPETITION(
EXPONENTIAL("1h"))

Rejected_order Message T_Order

Supply Message T_Order

Event name: Category: Data type: Persistence
interval:

Transfer
time:

Description:

yes
I<=10

no
ELSE

Loop_body
Product_stocks[I]:=0;
I:=I+1;

Continue_loop
OR

Initialyze_loop
I:=1;

At_system_start
Some hints on GRAPES-BM in simulation 119

•
•
•
•
•

120

•
•
•
•
•

Note the use of the timer At_system_start, defined via the built-in function START_TIME (see
Figure 7-35), which really enables the initialization to be the first action in the simulation
section execution. The array initialization itself is done in a pretty classical way - as in
programming languages, using i as a loop counter. There should be no other actions at
START_TIME in the model. If several independent initialization loops are necessary at
START_TIME, each has to use its own loop variable (due to the global nature of variables and
concurrent execution of independent tasks).

The task Create_order is the load generator in this example. The average quantity is different for
each of the products and depends on the constant array Demand. To implement this, the
randomly selected product type is first assigned to the “work variable” C_Product, because this
product type has to be used twice, in two lines of the set option for Order (if a random value has
to be used twice, it must be assigned to a variable or task attribute). Such a usage of a constant
array element as a distribution parameter is a typical way to achieve a product-dependent
demand.

The task Order_fillable evaluates whether the incoming Order is fillable on the basis of the
current value of Product_stocks for the requested product. See the yes decision branch of the task
where the actual formula is used. For the sake of simplicity, currently unfillable orders are simply
rejected. The technique of back-orders could be specified here as well, but it would make the
example larger. The task Fill_Order does a very important job - it decreases the stock value for
the ordered product. Be aware to do this “accounting” job without delay - to keep the “system
data base”, consisting here of the array Product_stocks, always actualized. Any real tasks related
to order filling and requiring some time to be executed (Ship_Product here) should be defined
as separate tasks following the “accounting task”. Any order acceptance - successful or not - is
followed by the task Time_to_replenish, which checks whether the stock level for the product
in consideration is below the reorder point. If so the production of a batch for this product is
initialized. The stock value for the product is increased accordingly after the production process
is completed (the task Register_supply). Certainly, the simplest possible scheme for triggering a
batch production is used here, in reality more elaborate schemes are used. For example, to avoid
multiple production orders for the same product while the first one is still in process, an
additional array variable Is_ordered could be used. The value of Is_ordered for the product could
be set to 1 in an auxiliary task before the actual production and to 0 after the production is
complete. Then a new batch should be started only if the relevant element of Is_ordered is equal
to 0.

The chains of tasks in the example all rely on the value of Product_type carried by all message
events in the example (they all have the same data type). Note that data values “flow through”
a task if incoming and outgoing events have the same data type and no explicit set-options are
used.

The global variable Product_stocks is accessed by several tasks in the BP diagram. The same
element of the array (i.e. indexed by the same product type) may be set by several tasks
(Fill_Order and Register_Supply) and read by more tasks in an arbitrary order, as the instances of
Chapter 7

these tasks are activated. In this simple example this concurrency (or more precisely,
unpredictability of execution order) causes no problems. But even slight modifications of the
example may require some precautions for concurrency. See more on it in 7.7.4.

7.7.3 Simulating models with global variables

Besides the traditional steps for running a simulation experiment described in chapter 5 global
variables require one more step. Namely, if constant arrays (as in the example) are used, their
values must be set from files. For each constant array a text file must be prepared, where each
line contains one constant array element. No explicit separator is used, just line break serves as
a separator. For simple values such as integers (used here) or floats these files may be generated
directly by any editor capable of saving .txt files, or exported as one column from an Excel table
(also as .txt).

This example requires three files - for the arrays Batch_size, Demand and Reorder_point
respectively. The file reord.txt for Reorder_point might look, e.g. this way:

100
150
200
150
200
250
100
200
150
250

The file name is irrelevant, you just have to remember it. Let us assume, that the values for
Batch_size and Demand are kept in files batch.txt and demand.txt respectively. More complicated
values such as durations should be prepared using Excel, because for durations the Excel
standard (time intervals as fractions of day, coded as real numbers) is used. First, select Excel
time format hh:mm:ss for a column and enter or paste the data, then reformat it to General and
Save as the 1-column table in the txt format. GRADE simulator will interpret it as hours,
minutes and seconds again. When you are ready to start a simulation run (see Fig. 4.4 in chapter
4), press the Inspect Variables (IV) button. You get the Inspect Variables window (see Figure 7-
37)
Some hints on GRAPES-BM in simulation 121

•
•
•
•
•

122

•
•
•
•
•

Figure 7-37: Inspect Variables window

Select in the window the first array to be entered - Batch_size this time and press the Read
Specified button. You are prompted to select the appropriate text file - this time the file batch.txt.
To make the job easier, it is recommended to keep the text files in the same model directory.
Repeat this for Demand and Reorder_point. If you want to repeat the session several times (as it
normally is), you can save all values in one file. Press the Write ALL button and select the file
name, e.g. all.txt. At the start of the next session, you can press Read ALL button and select the
“common file” all.txt. You can check the entered values by double-clicking on the select array.
Then you will see the values, as in Figure 7-38.
Chapter 7

Figure 7-38: Inspecting values of an array

When the constant array values are read from files, you can start simulation session, as described
in chapters 5 and 6. If you want to view the current values of variables (elementary or arrays)
use the same Inspect Variables window.

7.7.4 Modified example. Concurrency problems

Now let us make our example more realistic. The main difference is in a changed policy for
unfillable orders Now unfillable orders remain waiting in a queue until they can be filled due to
a new batch produced. All auxiliary diagrams remain the same, only the BP diagram is changed
- see Figure 7-39. The BP diagram has become even smaller, but logically more complicated.
Some hints on GRAPES-BM in simulation 123

•
•
•
•
•

124

•
•
•
•
•

Figure 7-39: Modified Business process

The key element in the new scheme is the task Order_fillable. It now has a new complicated
triggering condition:

Order WHERE Order.Quantity <= Product_stocks[Order.Product_type]

This condition says that an order does not start the task until the stock level for the required
product is not sufficient. It means that unfillable orders wait just in the queue at this task. But
the queue is checked repeatedly whether the stock level has increased only at moments when a
new Order arrives. You can use a fictitious timer event going to this task (but not used in the
triggering condition!) to force more frequent checks.

In order to retain orders as signals for stock level check, the orders are “copied” via a new task
Accept_order which starts also for unfillable orders. The same simplistic strategy for triggering a
production run is retained.

Initialize
_stocks

Accept_Order
Salesman

Order_fillable
Order WHERE Order.Quantity <=
Product_stocks[Order.Product_type]

Dispatcher
"1m"
Product_stocks[Order.Product_type] :=
Product_stocks[Order.Product_type] -
Order.Quantity

Time_to_replenish
Salesman

yes
Product_stocks[Order
.Product_type] <
Reorder_point[Order

.Product_type]

Produce_Batch
Mfg_dept
EXPONENTIAL("6h")

Ship
_Product

"20m"

Archive
_order

Salesman

Create_order
Customer
C_Product :=
UNIFORM(1,10);

Register_Supply
Salesman
Product_stocks[Supply
.Product_type]:= Product
_stocks[Supply.Product_type]
+Supply.Quantity

Regularly

Order

Order
SET Product_type=C_Product;
Quantity=UNIFORM(50,Demand[C_Product]);

Order

Order

Order

Internal_Order
/NOTID

Supply
SET Quantity=Batch_size
[Internal_Order.Product_type];
Chapter 7

Now, where the concurrency appears and what precautions are taken. Since Orders queue up at
the task Order_fillable, at a moment when a product batch has been produced and registered in
Product_Stocks (and a new Order arrives), all orders in the queue requiring that product can start
simultaneously (thus creating several instances of the task). If they were allowed to do so, they
would be able to decrease the stock level for the product even below zero. This is due to the fact
that at the task triggering moment the value of the relevant Product_stocks element is the same
for all instances - it is decreased only afterwards, at the end of the task instance. To avoid such
unneeded concurrency, only one instance of the task Order_fillable may exist at any time. The
best way to achieve this is via performers. This task now has the performer Dispatcher (with only
one instance available!) while other tasks use the performer Salesman (with several instances
available). Sometimes more bookkeeping may be necessary, e.g. for the current order to filled,
which also has to rely on the current value of Product_stocks. This may be implemented by
setting non-zero duration to the “critical task” (Order_fillable) and zero durations (i.e. non-
specified) for other bookkeeping tasks. Then all these tasks would be executed before the next
instance of Order_fillable ends. You must know that assignments are performed at the end of a
task instance (not at its start!), even after the task attributes have been set. Task decisions also
use the values of global variables at the end of task (after assignments). So this simple pattern
demonstrated in the example will guard your model against unwanted concurrencies which may
lead to very strange results in simulation.

It should be noted that the principle demonstrated for Order_fillable may be used for modeling
resource management (use of equipment, production space etc., which is characterized by the
fact that the assigned resource is busy even while not used by a task until explicitly released -
therefore not modeled by the performer concept). Such resources may be modeled by the
corresponding resource variables (simply integers if there are several instances of the resource),
with triggering conditions in “seize” tasks similar to that used for Order_fillable. You must
guarantee that in totality only one instance (of all management tasks related to the given
resource) is active. “Seize” tasks decrease the resource variable by one, but “release” tasks increase
it.

7.7.5 Variables and statistics

If a model uses global variables then any kind of standard statistics is obtained the same way as
usual. But a different issue is statistics of variable values. There are no built-in facilities for
gathering statistics on variable values since variables can behave in very complicated ways.

Standard statistics on an elementary variable can be obtained in a following way. Introduce a
technical task which has an attribute of the same type as the variable. In TD of this task set this
attribute equal to the variable value. Any task in the model which sets the chosen variable value
must have an outgoing event added which leads to the introduced technical task. Then during
simulation each modification of the variable value will activate this technical task, with the new
variable value appearing as the attribute value. In the result, the statistics on this attribute will
be the statistics on the variable values (i.e. AVG, MIN, MAX of the variable will be obtained).
Some hints on GRAPES-BM in simulation 125

•
•
•
•
•

126

•
•
•
•
•

For arrays the obtaining of statistics has to be “programmed” explicitly. For each variable array
several new arrays must be introduced, depending on what kind of statistics you want to obtain.
We show here how to obtain the average values for an array, namely the Product_stocks array in
the example.

The simplest way is to add 3 new arrays: Product_stocks_Counter, Product_stocks_Accum and
Product_stocks_AVG. The first two variables are of the same type Product_array, but for third a
new type AVG_array must be introduced (the same dimension, but elements are of type FLOAT,
not INTEGER). The business process must have one new task - the statistics counter. Figure 7-
40 shows the BP (similar to Figure 7-39) with the task Statistics added. An event S_Order (of
the same type as Order) goes from the two tasks where the Product_array is updated to the new
task. The new arrays must also be included in the initialization loop.

If the statistics task requires more assignments than here or even a group of tasks is necessary, it
is a good idea to “hide” the statistics computation in a subordinated BP. Since variables are
global there may be several tasks updating the same statistics.
Chapter 7

Figure 7-40: Business process with statistics

The only essential information carried by S_Order is which of the array elements is modified.
The computing of average is straightforward. You count the accumulated value of the
corresponding Product_stocks element, and the number of times it is modified. The average is
the ratio of these two values. Actually, you can do the same with 2 additional arrays, but more
complicated formulas. The obtained average is the simple average, just over the set of all values
assumed. The other possible average in the time-weighted average, where time intervals during
which the values have persisted are also taken into account. Then 4 additional arrays must be
introduced, one of them containing the time moment when the previous value change occurred.

Accept_Order
Salesman

Time_to_replenish
Salesman

yes
Product_stocks
[Order.Product_type]
< Reorder_point
[Order.Product_type]

Produce_Batch
Mfg_dept
EXPONENTIAL("6h")

Register_Supply
Salesman
Product_stocks[Supply
.Product_type]:= Product
_stocks[Supply.Product_type]
+Supply.Quantity

Create_order
Customer
C_Product :=
UNIFORM(1,10);

Initialize
_stocks

Order_fillable
Order WHERE Order.Quantity <=
Product_stocks[Order.Product_type]

Dispatcher
"1m"
Product_stocks[Order.Product_type] :=
Product_stocks[Order.Product_type] -
Order.Quantity

Ship
_Product

"20m"

Archive
_order

Salesman

Statistics
C_Product := S_Order.Product_type;
Product_stocks_Accum[C_Product] :=
Product_stocks_Accum[C_Product] +
Product_stocks[C_Product];

Product_stocks_Counter[C_Product] :=
Product_stocks_Counter[C_Product] +1;

Product_stocks_AVG[C_Product] :=
Product_stocks_Accum[C_Product] /
Product_stocks_Counter[C_Product];

Regularly

Order

Order
SET Product_type=C_Product;
Quantity=UNIFORM(50,Demand[C_Product]);

Order

Order

S_Order
Order

S_Order

Internal_Order
/NOTID

Supply
SET Quantity=Batch_size
[Internal_Order.Product_type];
Some hints on GRAPES-BM in simulation 127

•
•
•
•
•

128

•
•
•
•
•

At any simulation breakpoint you can view the computed statistics via the same Inspect variables
window,. When the standard statistics is transferred to Trace browser, a special Variables table is
added. There you can see the current values of all variables (i.e. at the last breakpoint). Arrays
containing statistics are best viewed just this way, they have each element in a separate row.
When Inspect variables is open, you can use Write Specified button to export a selected statistics
array to a text file, in order to continue its processing in Excel.
Chapter 7

8

Chapter 8
Debugging and testing business models

8.1 General techniques of debugging

A simulatable business model is something in between a simple graphical description and a
program. Therefore traditional debugging methods in software engineering are only partially
applicable here. However, some good advice may be given.

Let us assume here that you have a simulatable business model which, you feel, is somehow
wrong or not acting in the way you expected it to. The debugging methods described here will
help you locate the problem or the cause for the unexpected behavior.

First, let us look back at the controlled execution methods - stepping and running with
breakpoints on.

For stepping (discussed already in 5.1), use the switchable granularity in Miscellaneous page of
Options box. You can change these options after every step. Thus you can overcome the
difficulty of skipping over a massive number of “start of tasks” you are not interested in.
Uncheck the Task Instance Started, but check the Task Instance Ended box. Thus you can get to
the point where the first task instance ends.

Stepping should be combined with running until a breakpoint (see 4.3 and 5.1 for basics). The
six kinds of breakpoints also allow you to set up six breakpoints simultaneously - normally
sufficient for locating a specific situation. The most often used breakpoints, certainly, are

• task … instance started 1 time,

• task … instance ended 1 time,

• event …enqueued 1 time in task ….

Time and timer dependent breakpoints should be used when you feel there is something wrong
with respect to timers, e.g., at 5 PM.

Always set the breakpoint for a short bit before the suspicious situation, then “step” up the them.
129

•
•
•
•
•

130

•
•
•
•
•

You can set some more value-based breakpoints using the field definition in Gaugeboard/Add
gauge (see 5.2). For any of the fields you can define a Critical value (at or every) to be a
breakpoint. The kinds of breakpoints available here, are the same task instances started/ended,
events enqueued, plus a new possibility - length of a queue.

Remember one more thing - when you use Standard (the default) Random Generator, all runs
are identical, irrespective of what kinds of random elements are in the model. Therefore, when
you happen to skip a point of interest, reset the session and repeat the run with the breakpoints
set somewhat earlier. You will be able to watch the same situation once more.

8.2 Inspect in details

When you arrive at an interesting or suspicious point in the simulation run, a detailed
inspection should be made. The first use of Inspect for watching statistics was described in 6.3.1.
But there is more to it.

We reproduce here as Figure 8-1 once more the picture in Figure 6.2 - the main page of the
Inspect box - the Tasks page (enterable via IT), but now with a closer look at all of its details.

Figure 8-1: Tasks page of the Inspect box

The upper list contains all possible qualified task occurrences (including transactions). The
number to the right of a name indicates the currently active instance count for that task. When
you select a task (transaction) with at least one instance active, you get the instance Id list in the
Chapter 8

lower left listbox (Figure 8-1 shows that list for the task Assess_Query with one instance). The
lower right list (mentioned already in 6.2) contains active event queues for the task. The number
to the right of the name, shows the queue length. All this gives you a model activity overview.
You can investigate deeper (beside statistics, discussed in 6.2) any specific active task
(transaction) instance or event instance in a queue.

We start the explanation with task instances. Double-click on an instance Id to open this
instance. Now the task instance page appears with 2 or 3 subpages in it. Figure 8-2 shows the
instance page for the task Assess_Query.

Figure 8-2: Task instance page

The upper part displays the general instance characteristics: Id, start/end time, all triggering
events.

The Attributes subpage (visible in Figure 8-2) shows the values of default and user defined
attributes. The values of Cost and user defined attributes are visible only when you inspect the
task instance just ended (Figure 8-2 is “taken” after the end of the task Assess_Query). Otherwise
you see the ***NOT EVALUATED *** sign in the value field.

The Used Performers subpage shows the list of performers seized for the task instance and their
count.
Debugging and testing business models 131

•
•
•
•
•

132

•
•
•
•
•

The Transactions Containing Current Task subpage shows a list of transactions (of different
levels) of which the given task instance is a part. Figure 8-3 shows that list with one element
(there can be no more elements in this list for the Office example, since only one transaction
level is available).

For each transaction in the list the TID value is visible. This page appears only if the task is in
a transaction.

Figure 8-3: Transactions containing current task subpage

Further navigation is possible from

• triggered events list element (always visible),

• transaction instance list element (transactions subpage).

Navigation is as always, via double-click (or click + Enter).

In the first case you navigate to the appropriate event instance page (accessible also directly).
Figure 8-4 shows that page for the event Query.
Chapter 8

Figure 8-4: Event instance page

Besides the self-explanatory fields, the page contains optional subpages

• TID list, if the event is a part of a transaction. From this list you can navigate to transaction
instance page.

• Attributes subpage, if the event carries some data fields (i.e., it has a data type specified in ET).
Field values are visible there.

Query in Figure 8-4 has only the TID list of one element.

In the second case, you navigate directly to the transaction instance page. This page is similar
to a task page, but with some minor differences - two differing subpages (besides the common
one - Attributes):

• Tasks in this transaction,

• Tagged events.

The first one gives you a list of the active task instances in the transaction, to which you can
navigate. The second gives you a list of events carrying the transaction instance TID. You can
navigate to each event instance page.

This event instance list may be essential for understanding the causes for a transaction getting
stuck.
Debugging and testing business models 133

•
•
•
•
•

134

•
•
•
•
•

Another point from which to start navigating is the Tasks page, for each task with a non-empty
queue. Double-click on the queue, see the event instance list page, from which you can navigate
to any element of it (i.e., to event instance page described above).

Thus the Tasks page actually contains a network of subpages through which you can freely
navigate. Using the Previous button you always get one step back in the navigation stack, but
you can return also to another previous inspect (page).This style of navigation is typical to the
Windows environment, e.g., in Help files.

The independent Performers page (you can enter it directly via IP) contains only a subpage for
each element in the ORG diagram (used or unused in tasks). This subpage has the form (see
Figure 8-5):

Figure 8-5: Performer page

Very important is the Instances table showing the current usage of performers. If we are inside
the availability period, Available+Used=Total (as it is in Figure 8-5. Outside the availability
period both Available and Used are equal to zero.

Instances table should be consulted always when you suspect that a task does not start due to a
performer shortage.

The subpages below just display the current statistics items.

The SP parameters page was discussed in 7.4, the Variables page in 7.7.3.
Chapter 8

You see that Inspect gives you lot of information, which is not easy to grasp at first glance.
Navigate freely through all this (like you do through WWW pages), since you cannot change or
damage anything.

8.3 How to understand why a task does not start

One of the most typical problems is a task not starting when it should do so. Namely the
triggering condition of the task appears to be true, but the task does not start for some reason.

The first trivial cause for such a situation may be inconsistent properties (triggering condition,
performer expression) in a task's TD, as compared to those in the BP diagram (which, most
probably, is considered to be always up-to-date).

When trivialities are excluded, two serious causes remain

• performer not available,

• wrong TIDs, violating the merge condition (when there are several ANDed events in the
triggering condition).

You always have to check both possibilities. To arrive exactly to the problem point, single step,
or set the breakpoint to the last necessary event enqueued (i.e., when all events forming the
triggering condition are enqueued). This may require several trials before you catch which of the
events is the last (remember that all runs are identical unless you change the model). Now, when
you are sure that the task should start because all triggering events are present, single-step with
full granularity to see whether the task actually does not start at this model time moment (there
may be a lot of other starts/ends before the given one at the same model time value).

If the task remains inactive, enter Inspect

• look at all required performers for the task, and see whether at least one instance of each is
available (in the performers page),

• if the performers are OK, start investigating TIDs of events. Enter any of the queues and for
each of the instances find the TIDs (TID list subpage of the event instance page). See whether
there is a matching combination of events (with TIDs equal at all levels). If some of the
events have no TIDs at a given level, then there are no merge problems with them. If the
matching combination is not found, review the model for incorrect transaction
management. The comparison of TIDs may be very tedious if queues are large, therefore try
to locate the problem when it occurs for the first time.
Debugging and testing business models 135

•
•
•
•
•

136

•
•
•
•
•

8.4 How to spot a transaction that got stuck

Another typical problem is a transaction instance never ending. To arrive at such a situation, it
may take a longer run. But when you are sure that a specific transaction instance should have
been completed, start investigation.

Inspect the transaction instance page. If there are tasks active in it, you just have to wait for the
tasks to complete. If there are no tasks active, look at the Tagged Events subpage. Navigate to the
instance page for each event and see whether it

• is in the queue of some task,

• goes to the queue of some task (due to non-zero transfer time).

Now you have to assess whether it was intended that the event is still in some queue (or traveling
to a queue). As a rule, these investigations reveal the model error - most probably a missing or
misplaced END of transaction.

8.5 Testing a model via statistics

Since a simulatable business model is not a program with exact specification, sometimes it is
very complicated to understand whether the model actually behaves as you intended. We
provide a few guidelines to follow.

When you find no more obvious faults in the model's behavior, start testing. Set all possible
statistics on, and start running sessions repeatedly (using a breakpoint). After each run,
investigate the statistics (especially, task activation/completion count, count of events
arrived/left a queue and processing times). Try to check the following points:

• is the number of started and completed tasks and, especially, transactions plausible?

• what are the processing times of transactions, are there any instances living too long?

• are the lengths of queues plausible?

• at points where event chains branch, are event flows and task activations before and after the
branch compatible?

During all this try to make rough estimates of what is expected. To do this, replace random
values by the corresponding mean values. Remember that after about 100 activations at least
one digit of the average should be equal to that of the mean value.
Chapter 8

There is no foolproof way of testing a business model. All you can do is use good judgment and
systematically review each of the four points listed above. Your first several tries at debugging a
model will probably be very time consuming until you accustom yourself to looking for these
key problem indicators. After overcoming this hurdle, your confidence in the results will grow
and the time it takes you to obtain the results you require will decrease dramatically.

8.6 Use of trace in debugging and testing

The use of the trace for gathering and analyzing statistics was considered in Section 6.6. Another
use of the trace is for exhaustive debugging and testing. In this case the recording of trace to the
Trace browser is recommended. The same filtering features as for textual trace apply (see Section
6.6 on how to use them). But in many cases the recording of a complete trace is recommended
for model debugging. To obtain a complete trace, switch all check boxes on in the Options/Trace
box (see Fig. 6.24). By default, Details assumes all elements of the given type are enabled, so you
have no need to enter Details to obtain a complete trace. If a particular type of activity is of no
interest for you, leave it switched off.

 The complete simulation trace is a sort of log where all elementary activities are recorded.
Activities may be recorded with or without the data contained in events or tasks.

The following activities (micro steps) are recorded in a complete trace:

• start transaction

• end transaction

• enqueue an event or timer

• consume an event or timer (i.e. use in triggering)

• discard an event (because of end of persistence interval)

• start a task

• make decision

• send event

• end task

• seize performer

• release performer

As you see the activities here are smaller than in stepping. For each activity, a standard set of
information is recorded.

Records for send event action are accompanied by event data (if any), end task (end transaction)
- by final task (transaction) attributes, if the data mode for the trace is on.
Debugging and testing business models 137

•
•
•
•
•

138

•
•
•
•
•

Trace lines are recorded in the order the corresponding actions occur in simulation, that is in
chronological order.

The recording of the trace to the Trace browser can be switched on/off and the scope of data
gathered can also be redefined any time you pause the simulation, e.g., at a breakpoint. The
storage space on a hard disk that a complete trace occupies is very large, therefore have the
trace enabled only for “interesting” periods of simulation. Another possibility for switching the
trace on/off is by using the field definition in Gaugeboard/Add gauge (see 5.2). For any of the
fields, you can define a Critical value (at or every); a point where the trace is automatically
switched on or off. The textual trace can also be switched on/off at breakpoints. But only the
last portion of the trace is available in the text file - this option is the best for statistical analysis.

The only way to review a trace written to the Trace browser is via the Trace browser itself - it is
not an ASCII file. The trace is presented there as one of the tables: select BM Trace (Table) in
Open Results box. All Trace browser services for tables apply, including column
selection/deselecting. Figure 8-6 shows the initial fragment of the trace for the Office example.

Figure 8-6: Example of trace in Trace browser

The Action column contains the action type, by which you identify what activity the row
corresponds to. Task/transaction column shows the entity performing the action. Event/performer
column describes the object of the action. For event sending, the receiver task column is also
used (it may also be made visible, by default, it is off). In Grade V.4.0, for each non-decision
task a formal decision having the same name as the task itself appears in the trace (see line 6 in
Figure 8-6. The data values (when recorded) may be observed by double-clicking on the
corresponding row (end task/transaction, send event).
Chapter 8

There are two typical usage cases for the simulation trace:

• to record a fragment of a simulation run where the model does not behave as expected. The
trace provides more information for debugging purposes than simply “stepping” through the
model and observing its behavior via Inspect.

• to record a relatively long simulation period for an apparently valid model, to determine
whether in fact the model behaves as planned. Trace filtering features, e.g., may be used to
filter out unneeded details.

However, you should be aware that large traces are processed rather slowly by the Trace Browser.
Very large textual traces may be handled efficiently by a database management program like
ACCESS, when importing the data into a spreadsheet takes too long or the spreadsheet becomes
too large. Queries and sorting of the data are very fast, though calculations based on the data are
not quite as convenient as in spreadsheet programs.
Debugging and testing business models 139

•
•
•
•
•

140

•
•
•
•
•

Chapter 8

9

Chapter 9
Advanced topics in statistics gathering

9.1 Warm-up period

There are business systems with stable but relatively long queues and performers utilization rates
near 100%. For such business models it is typical that the initial periods of their simulation look
quite different, with much shorter queues and significantly less performer utilization. This is
due to the well-known fact in simulation practice, that stable queues can’t reach their typical
values very quickly.

To deal with such models, the GRADE Simulator offers the feature of a warm-up period. It is
the initial period of a simulation session, during which the statistics simply are not registered.
In other words, all statistics counters start their counting after the end of the warm-up period.
Thus more accurate values of statistics items can be obtained in shorter sessions.

You can set the length of warm-up period in the Options box, Initials page, End of warm-up
period group. The length of the warm-up period is specified in the same way as the session
length, as one of:

• the end model time of the warm-up period

• the duration of the period

• the number of some event enqueued

The “units” used for warm-up length may be different than those for session length.

The warm-up period is part of the session, therefore session length always must be greater than
warm-up period length. In the same way, the warm-up is completely independent of breakpoint
setting.

There are no peculiarities in simulation, when the warm-up period is non-zero, the statistics
counting and watching is done the same way as always.

The main practical problem is how to guess the optimal length of the warm-up period. As a rule,
a number of smaller experiments with the same model permit you to find some appropriate
warm-up length. There are no general principles how to evaluate the period beforehand.
141

•
•
•
•
•

142

•
•
•
•
•

One of the methods for determining the warm-up length applicable to many models, is to watch
the current number of transaction instances during the model run. The moment when this
number ceases to grow monotonously, and starts to oscillate around some value, is the end of
the warm-up period.

You can also record a textual trace with some relevant values and build the corresponding line
graphs in Excel - they show the trends very clearly. But you can’t store in the textual trace “system
data” such as queue lengths.

Certainly, there may be business models, where the properties of the model determine a natural
warm-up length. One such case may be very long transactions (containing long constant
elements like tasks with large durations or large event transfer times). For such systems it is
frequently natural to define the period till the nearest possible end of a transaction to be a warm-
up period. It is in line with the nature of the warm-up concept, since only after that moment an
equilibrium can occur, when the number of starting and ending transactions is on average the
same.

The presence of a non-zero warm-up period may also cause some minor aberrations in some
statistical items. This is related to the fact that some tasks or transaction instances may only
partially be within the statistics counting period. Different definitions are used for different
items in dealing with such tasks. A real problem with statistics may only occur if typical task or
transaction lengths are comparable to the statistics counting period. See the exact definitions of
statistics items for that case in the Language reference manual or in the GRADE on-line help.
But the general advice is:

set statistics counting period (session length minus warm-up length) significantly greater than
typical transaction length.

It is useless to define a warm-up period for models with non-stable (growing) queues. For such
models, the actual average queue length simply does not exist. By the way, our Office model is
an example of this - the queue for Assess_Query is constantly growing for the chosen numeric
values (see 6.4). The best way to investigate non-stable models is to record the relevant values
in a text file and perform the dynamic analysis via Excel (see 6.6 and 7.6.2 on how to record the
data)

We conclude this section with a slight modification of our Office example; in order to have
stable, but non-trivial values for queue lengths in the model. The following modifications must
be done:

• set the persistence interval for At_5_pm equal to 43 minutes

• set the duration of task Find_Reviewer equal to 5 minutes (instead of 10).

Then make two equal-length experiments with the model:

• a session with a session length 200 days and zero warm-up
Chapter 9

• a session with 100 days warm-up, and a session length of the same 200 days.

The following table shows the main results. In the role of reference the third session with the
length of 400 is also presented.

See which of the two sessions yield results closer to the reference session.

9.2 What are the costs of simulation

When a simulation experiment with a model is to be done, the question always arises - how long
it is worthwhile to simulate.

The answer always is a trade-off between

• accuracy to be obtained

• resources spent for simulation.

First, about accuracy.

Never try to obtain numeric simulation results more precise than the numeric values of input
data, i.e. input flow rates, task durations etc. It is a case of the general GIGO rule in computing:
Garbage In - Garbage Out. If the precision of model parameters is about 10%, then striving for
single digit certainty in the results makes sense, in general.

As it was already pointed out in section 6.4, the relative precision of the simulation itself, i.e.
the relative deviation of the obtained average value from the corresponding mean value is
approximately proportional to one divided by the square root of the number of observations.
The number of observation is the number of times the value in question (attribute value,
transaction duration, queue length etc.) has been obtained during the session. The rough guide
to this count, as a rule, is the number of transactions completed. Let all this be a guideline when
you plan the simulation session.

session 1 session 2 session 3

Length of queue Query at Forward_to_Chief 24.7 27.5 27.0

Length of queue Query at Assess_Query 19.3 22.0 20.6

Average of query processing time 3d:20h:29m 4d:0h:30m 4d:2h:53m

Average cost of query processing 7.354 7.353 7.343

Average number of reviewers per query 1.005 1.005 1.003

Table 9-1: Results of Simulation
Advanced topics in statistics gathering 143

•
•
•
•
•

144

•
•
•
•
•

The random numbers used in GRADE Simulator have been tested for their quality. To increase
confidence in results, you can repeat a session with always different random seed by setting in
Options/Initials/Random number the option Varying (then the seed value is obtained from the
clock).

The other side is - how expensive is the simulation. Naturally, the time consumed simulating a
model pales in comparison to the time/cost of gathering the underlying data. However,
simulation experiments are rather time consuming. The general rate of simulation is
approximately 50 task instances per second (on 100 MHz Pentium, 32 MB RAM). By task
instance per second we mean the complete “life cycle” of a task instance: triggering, start,
completion, output event sending. This rate depends on the complexity of the GRAPES-BM
language features (triggering conditions, expressions in decisions, etc.) used. For non-data-
intensive models (like our Office example) which are typical to BPR applications, the rate
depends very little on the model size - there may be a model with hundreds of BP diagrams and
thousands of task occurrences, still with the same rate.

But the simulation does depend heavily on the size of dynamic data - length of queues, number
of active task instances, events on arrows during transfer, etc. A simple estimate of the dynamic
data size in typical models is just the number of active transactions (unless you have switched
off the transactions with NOSTART).

In the Office example, the simulation rate drops from 50 tasks per second in the beginning to

- 33 tasks per second with 500 transactions active

- 22 tasks per second with 1000 transactions active

A situation which you should try to avoid is when a typical transaction length is very long (e.g.,
several days) when compared to the mean interval for some input event flow (e.g., some
seconds). Namely such models lead to an extremely high number of concurrently active
transactions. When possible, try to split such models into several submodels with shorter
transactions for simulation.

So, it is up to you to decide how large a simulation experiments is worthwhile.

The main advantage of using GRADE-BM for simulation, however, should always be the ease
with which you can start simulation on the basis of business models built for business process
re-engineering and system analysis.
Chapter 9

References

[1] GRADE BM Version 4.0. Introductory Guide. INFOLOGISTIK GmbH, 1998.

[2] GRADE BM Version 4.0. Language Guide. INFOLOGISTIK GmbH, 1998.

[3] GRADE BM Version 4.0. Language Reference. INFOLOGISTIK GmbH, 1998.
145

•
•
•
•
•

146

•
•
•
•
•

Index

A
Analyzing model syntax 19

checking consistency 20
reviewing error message 21
starting analysis 19
status indicator 20
summary of diagnostics 19, 20

Animation 45
control panel 48
diagram selection 46
display of active elements 47
using showboxes 108

B
Breakpoints 33

setting 34
setting via gauges 130

C
Consistency between BP and TD 87
constant arrays 115

D
Data in simulation 110

computing totals 110
defining time-stamps 112
use in event attributes 114

Debugging of business models 129, 130
single-stepping 129
using breakpoints 129
using Inspect 130

Default statistics 49
for events 51
for performers 52
for tasks 49
for transactions 50

E
Execution commands

pause 28

reset 28
run 28
step 28, 37

Export to Excel
from Trace browser 61
via textual trace 73

G
Gauges 41

adding 41
Global variables 115

I
Inspecting

attributes and TID 131
events 132
performers 134
statistics 54
task instance 131
tasks 130

L
Load generator 10, 81

using spontaneous event 84

M
Making model simulatable

adding task duration 13
adding timers 8
specifying decision details 15

Model consistency 87
Model consystency 87
Model time 28, 38

R
Read-only mode of editors 39

S
Saving session parameters 33
Simulation options 30
147

•
•
•
•
•

148

•
•
•
•
•

Simulation parameters 103
assigning values 106
permitted use 105

Simulation results
expected precision 68

Simulation session 27
length 32
parameters 27, 30
start time 31

Simulator window 27
fields 29, 38, 43
status bar 29, 38

SP 107
Starting simulation 25

background model preparation 25
diagnostic messages from preparation 26

Statistics 49
for user attributes 69

switching on 71
reviewing 54

in Simulator 54
queue statistics 55
via Trace browser 57

switching on 52
Step granularity 35, 40
Structural consistency 86

checking by analyzer 86
checking during preparation 86

T
Trace

filtering 73
format of ASCII trace 77
import into Excel 77
in ASCII file 73
rcording data 74

Trace browser 57
reviewing charts 60
reviewing tables 59
reviewing trace 137
selecting statistical item 58

Transactions in statistics 96
Typical errors in transactions 90

use of NOTID 95

U
User attributes

assigning value in TD 70
Attribute table 70

W
Warm-up period 141

excluding from statistics 141

	Introduction
	1.1 Why should a business model be simulated?

	Making a business model valid for simulation
	2.1 Business model example
	2.2 The main concern - adding stimulus
	2.3 More necessary improvements to the model
	2.3.1 Adding task duration
	2.3.2 Specifying decision details
	2.3.3 Checking performer definition correctness

	Analyzing syntax
	3.1 How to start analysis
	3.2 Removing syntax errors - the first hints

	How to simulate a model
	4.1 Starting the simulation
	4.2 Simulator control window
	4.3 Setting session parameters

	Observing a Simulation session
	5.1 Execution by steps
	5.2 Execution in Run mode
	5.3 Animation of the model

	Statistics in GRADE-BM
	6.1 What default statistics are available
	6.1.1 Statistics for tasks and transactions
	6.1.2 Statistics for events
	6.1.3 Statistics for performers

	6.2 How to start gathering statistics
	6.3 Reviewing the statistics
	6.3.1 Reviewing statistics in the Simulator
	6.3.2 Reviewing statistics via Trace browser

	6.4 A small statistical experiment
	6.5 User attributes in statistics
	6.6 Use of the trace for obtaining time dependent statistics

	Some hints on GRAPES-BM in simulation
	7.1 Building load generators
	7.1.1 More on using timers
	7.1.2 Using spontaneous events

	7.2 Model consistency issues
	7.2.1 Structure and event connection consistency
	7.2.2 Consistency of properties between BP and TD diagrams
	7.2.3 Consistency between ORG diagram and performer expressions in tasks

	7.3 Transactions in simulation
	7.3.1 Common pitfalls related to merge conditions
	7.3.2 Adapting transactions for statistics
	7.3.3 Aggregate processing and transactions

	7.4 Using simulation parameters (SP) table
	7.5 Using show boxes
	7.6 Data in user attributes and events
	7.6.1 General data-based “programming” in GRAPES-BM
	7.6.2 Approaches for gathering additional statistics

	7.7 Use of global variables
	7.7.1 When to use global variables
	7.7.2 Example of a typical use of global variables
	7.7.3 Simulating models with global variables
	7.7.4 Modified example. Concurrency problems
	7.7.5 Variables and statistics

	Debugging and testing business models
	8.1 General techniques of debugging
	8.2 Inspect in details
	8.3 How to understand why a task does not start
	8.4 How to spot a transaction that got stuck
	8.5 Testing a model via statistics
	8.6 Use of trace in debugging and testing

	Advanced topics in statistics gathering
	9.1 Warm-up period
	9.2 What are the costs of simulation

	References
	Index

