
GRADE
Business Modeling

LANGUAGE GUIDE

GRADE
Business Modeling

LANGUAGE GUIDE

Copyright � 1998 by INFOLOGISTIK GmbH.

All rights reserved.

No parts of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, without the express written permission of INFOLOGISTIK GmbH.

Information in this document is subject to change without notice.

Release 4.0.3, Revised May 1998.

Contents

Introduction . 1

Chapter 1 Goals of Business Modeling . 5

Chapter 2 Main Concepts of Business Modeling . 7
2.1 Tasks . 7

2.2 Events . 8

2.2.1 Transfer Events . 9

2.2.2 Control Flow Events . 10

2.2.3 Timers . 11

2.3 Task components . 12

2.4 Data Manipulation . 16

Chapter 3 Business Process Description . 19

Chapter 4 Organization Structure . 23

Chapter 5 Components of the Business Model . 25

Chapter 6 Structuring of Business Processes . 37

Chapter 7 Default Structuring of the Business Model . 45

Chapter 8 Re-use of Tasks . 49

Chapter 9 The Concept of a Transaction . 55
9.1 Transaction Identifiers . 60

9.2 End of Transaction . 63
iii

•
•
•
•
•

iv

•
•
•
•
•

Chapter 10 Transactions in a Structured Model . 67

Chapter 11 Goals and Limitations . 73

Chapter 12 Organization Structure Modeling . 75
12.1 Organization Diagram (ORG) . 75

12.2 Attributes . 78

Chapter 13 Data Modeling . 83
13.1 Datatype definitions . 83

13.2 Entity Relationship Diagrams . 86

Chapter 14 Description of Events . 89
14.1 Event Table . 89

14.2 Event Attributes in BP . 92

Chapter 15 Task Details . 95
15.1 Task type and task attributes . 97

15.2 Triggering conditions of a task . 99

15.3 Performers of tasks . 101

15.4 Task Duration . 104

15.5 Priority . 104

15.6 Max Instances . 105

15.7 Alternatives . 105

15.8 Informal Sections . 105

Chapter 16 Task Outputs . 107
16.1 Branching Conditions . 107

16.2 Values of Output Events . 109

Chapter 17 Example: Production Line . 115
17.1 Simplified view of tasks . 115

17.2 Probabilities of Defects . 117

Chapter 18 Solution Templates . 121
18.1 Modeling of Memory . 122

18.2 Modeling of a Shared Queue . 124

18.3 Modeling of Interrupts . 126

18.4 Time Control . 129

18.5 Modeling of Counters . 130

18.6 When BM should not be used . 133

Chapter 19 Overview of GRADE/BM . 135

Chapter 20 Outline of Methodology . 139
20.1 Recommended Sequence of Business Model Development 140

20.2 Static Analysis of Business Processes . 147

Chapter 21 GRAPES-BM and Data Flow Modeling . 151

References . 159
Contents v

•
•
•
•
•

vi

•
•
•
•
•

Part I
Concepts of Business Modeling

Introduction

The Business Modeling language GRAPES-BM is a semiformal graphical language, aimed
towards modeling and simulation of business systems (production processes, offices,
information systems etc.).

It contains convenient facilities for

• modeling of control and data flows

• organizational structure modeling of a system

• data modeling

Such a modeling (together with simulation) is a starting point for understanding and re-
engineering of any business system.

This text will concentrate on the Business Modeling language GRAPES-BM 4.0. This language
has come about through a relatively long gestation period, including several previous versions
with and without tool support.

The first paper about the GRAPES-BM language was published in 1994 (A. Aue, M. Breu,
IEEE Trans. SESE, vol.20, 8.1994). Afterwards M. Breu, A. Mraz, H. Richter, et al (European
Methodology and System Centre) have issued several pre-prints where the concept was
developed further. On the basis of the above mentioned works G. Barzdins, J. Barzdins and A.
Kalnins (Latvian University, Institute of Mathematics and Informatics) created a version of
GRAPES-BM 2.0 which was implemented in the tool GRADE V.2.0.

The practical application of the language in GRADE V.2.0 proved that it was necessary to
continue development of the language to enable modeling of more complex systems.

Thus a principally new version of the GRAPES-BM language - GRAPES-BM 3.0 was created
and implemented in the tool GRADE V.3.0.

Besides J. Barzdins and A. Kalnins (who did the main development work) the following people
have made a big contribution (in alphabetic sequence): D. Foerster (SNI - Germany), E. Knöner
(SNI - Germany), C. Rositani (SNI - Italy), J. Tenteris (RITI), E. Vilums (RITI), M. Weiss
(SNI - Germany), U. O. Ziemelis (INFOLOGISTIK). Valuable input for the language
development has come from the leaders of the tool development group I. Etmane, A. Kalis, K.
Podnieks (LU MII/ RITI), U. Sukovskis, A. Teilans (RITI), A. Zarins (LU MII/ RITI) and
many others.
1

•
•
•
•
•

2

•
•
•
•
•

The text will describe a new extended version of GRAPES-BM, known as GRAPES-BM 4.0.
A new feature in this version, when compared to 3.0, is the presence of so-called short (or
alternative) names for tasks. The short names, such as 2, 2.3, 2.3.1 etc. help to represent the
correspondence of tasks to hierarchy levels in an easy-to-read way. Further, there are some
changes in diagram type names, in comparison to the version 3.0, for example, TCD diagram
is renamed to BP diagram and TSD diagram to TD diagram. Next, a new table the VT (Variable
Table) for simulation purpose has been introduced. There are also slight changes in the model
tree structure.

Simultaneously with the development of GRAPES-BM 4.0 a new version of the GRADE tool
has been created - GRADE V 4.0. The new tool version has significant differences from the
previous version 3.0. GRADE V 4.0 supports not only:

• business modeling according to GRAPES-BM 4.0

• system design according to GRAPES-86 and GRAPES/4GL (the same way as the previous
tool versions)

but also

• modeling the static structure of business systems (object modeling) according to
OMT/UML by J.Rumbough.

The addition of object modeling provides a new approach to system modeling in GRADE. The
analysis of a business system could be started by modeling either:

• its static structure using the OMT/UML facilities, or

• by building a rough business model.

Then the modeling of the discrete business processes within the system could be performed
using the facilities of GRAPES-BM. The next stage may be the (Information) system design,
supported by the languages GRAPES-86 and GRAPES/4GL (prior to the programming in the
target environment). As already mentioned however, this text deals primarily with the business
modeling language GRAPES-BM 4.0 and its applications.

Object modeling is covered quite well in the book

J.Rumbough et al. Object Oriented Modeling and Design., Prentice Hall, 1991.

The language support for the final stage - GRAPES-86 and GRAPES/4GL is presented in the
books

G.Held, editor:- Sprachbeschreibung GRAPES: Syntax, Semantik und Grammatik von
GRAPES-86, Verlag Siemens AG, 1990

and

GRADE Version 2.0 Language Description, 1995,

respectively.

The description of GRAPES-BM presented in this book is self-contained, it can be read
independently of the other GRADE documents. At the same time it is highly recommended to
combine the study of this book with learning the tool GRADE (by GRADE/BM we understand
that subset of functionality of GRADE V 4.0 which supports the language GRAPES-BM). All
figures which are present in the book (except 21-1, 21-2, 21-4, 21-6) have been created by the
tool GRADE V 4.0. These figures also present details of the graphical syntax of GRAPES-BM.
 3

•
•
•
•
•

4

•
•
•
•
•

1

Chapter 1
Goals of Business Modeling

In the broadest sense, business modeling is a means to an end - the end being the redesign of an
enterprise (or specific parts thereof) to make it more competitive in the marketplace. To achieve
this end, we use business modeling to create “true-to-life” models of some business processes or
structures within the enterprise, that either already exist or are in the planning stages, which can
be evaluated and analyzed in various ways. Therefor we might say that the real goal of business
modeling is to provides a blueprint for change. This blueprint has already been validated, so that
when implemented it produces the desired end result - enhanced competitiveness.

Why is BM important? BM is important because it de-mystifies the re-engineering process.
Through the medium of BM, stakeholders can participate and provide valuable inputs into the
re-engineering process, without learning obscure management or organizational theories.
Business problems are made transparent through modeling, and solutions are tested through
simulation. Experimental changes to organizations and processes can be tried out in a modeling
environment, that would be unthinkable in real life. The ideal is a clearly understood problem,
answered with a well-tested and validated solution, all presented in a graphical business model.

BM has a wide range of applications, some very generalized such as ISO certification involving
all facets of an enterprise, or more narrow applications such as optimizing highly repetitive
paper-flow processes prior to implementing a work-flow system. The following are typical
applications, which very often appear in combinations and overlap one another:

• In Business process analysis

- to design an optimal business process;

- to provide a framework for evaluating existing and future business processes and
organizational structure;

- to provide a uniform vehicle for statistically evaluating processes and organizations,
including anything from cost/benefit analysis on changes in existing processes to doing
benchmarking on competitor’s processes to see how other companies perform.

• In Organizational analysis or consulting

- to provide graphical models of the structure and distribution of responsibilities within
organizations;

- to coordinate strategic planning and organizational development, so that the future
organization is in line with the future plans of the organization itself;
5

•
•
•
•
•

6

•
•
•
•
•

- to coordinate information system development with organizational development.

• In software design

- prior to the formal systems analysis stage it is used to understand the general requirements
that an organization might have on any new information system to be developed;

- in the design stage, to create sequences of tasks providing production of expected results
from a number of inputs;

- prior to the implementation of a automation solution, such as a work-flow or document
management system, to rationalize and optimize the flow of information through an
organization.

The areas of application are really only limited by the imagination of the user, and to the
applicability of BM to the area of inquiry. Additional notes on the applicability of BM to certain
types of problems can be found in the introduction to Part 2 (Chapter 11) and at the end of
Chapter 18.
Chapter 1

2

Chapter 2
Main Concepts of Business Modeling

Business modeling is based on 2 fundamental concepts: tasks and events.

2.1 Tasks

According to Webster’s dictionary, a ‘Task’ is defined as a ‘piece of work assigned to or expected
of a person’ or simply ‘a piece of work’. In BM the concept of task is formalized further. It is
associated with a number of formal attributes that provide additional information about the task
(e.g. performer of the task and the duration). A fundamental feature of a task in GRAPES-BM
is the assumption that each task receives certain inputs and produces certain outputs. We shall
call these input/output objects (or more precisely - the arrival of an input object and departure
of an output object) ‘events’. These objects can be material things or just information.

Graphically, a task is represented as a rounded rectangle:

Usually a task has at the very least:

• a name for identification;

• a performer associated with it.

There are 2 types of tasks - ordinary (transformation) tasks and branching (decision) tasks.
During the execution of a decision task, one or more of the alternative outputs of decisions are
chosen. This influences the selection of further tasks.

Task A
Performer 1
7

•
•
•
•
•

8

•
•
•
•
•

Decisions always have a name, e.g. Correct, Wrong, OK. The name of the decision and its other
attributes are represented within a hexagon:

The business model may also include external tasks. These tasks describe activities performed
within the surroundings of the system under consideration. External tasks are represented as a
rectangles with dashed borders:

2.2 Events

Tasks in the business model are initiated (triggered) by events.

Webster’s dictionary gives several definitions of an event:

• something that happens or is regarded as happening; an occurrence, especially one of some
importance;

• something that occurs in a certain place during a particular interval of time;

• the outcome, issue, or result of anything; consequence.

These definitions are all suitable in the context of BM.

In GRAPES-BM there are several kinds and categories of events. The classification of events can
be represented as follows:

Correct Wrong

Check Order
Accountant

Send Order
Client

Events

Transfer of object

Message
category

Material
category

User defined
category

Control flow Timer

Timer
category
Chapter 2

2.2.1 Transfer Events

The first kind of event represents the fact that a passive object (material or message) is produced
by one task and transferred to another task. For simplicity we shall call them transfer events.
The transferred objects can be:

• materials;

• messages or pure information;

• any other user defined category.

In the business process diagram we emphasize the tasks sending or receiving the transfer event.
This will be depicted as an arrow with the name of the event connecting two tasks:

The above figure depicts that Task A sends message E, therefore E can be called the output event
of Task A. Similarly, Task B receives message E therefore we can say that E is the input event of
Task B. For simplicity we shall say that Task A sends a message or material E and Task B receives
message E.

The outgoing arrow of Task A means that Task A produces the event ‘send transfer object E to
the next task’. The incoming arrow of Task B means that Task B can be started (triggered) by the
event ‘receive transfer object E from the previous task’.

The state of a system or an object can also be considered as a transfer event. In the following
diagram, the task heat water would produce the output event water boils. Another task switch off
heater will receive information about this event which can be considered an input event of this
task:

Any type of transfer event can carry information. The information is represented as a datatype
associated with that event. The association is described in the Event Table, which we will return
to later in this book.

Task A

Task B

E

heat water

switch off
heater

water boils
Main Concepts of Business Modeling 9

•
•
•
•
•

10

•
•
•
•
•

Transfer events always have a name which is depicted next to the arrow. Event names should be
chosen carefully and consistently to provide events with semantic meaning in the diagram. For
example, if Task A produces orders that are transferred to Task B, then a reasonable event name
would be Order:

An alternative formulation might include renaming Order to Order Produced, indicating the
state of the object Order, and that its receipt is the input event for Task B.

The Tasks should also be assigned semantically meaningful names. The previous example would
be more understandable if we renamed Task A to Prepare and Send Order or simply Prepare since
order is already appears in the event name. A better name for Task B would be Receive Order or
Receive and Process Order or simply Process (depending on what piece of work is associated with
Task B).

Task names should also be unique. If the task Process is always associated with Order then
everything is understandable. If ‘Process’ might concern Orders, Invoices, Reports, etc., then the
name of transfer object to be processed should be included in the name of the task, e.g. Process
order, Process invoice, etc.

From this point onward we will usually refer to transfer events as messages.

2.2.2 Control Flow Events

The next kind of events are Control Flow events.

Task A

Task B

Order

Prepare

Process

Order

Task A

Task B
Chapter 2

These events are also represented by arrows between tasks, always have no name associated with
them and consequently do not explicitly appear in the Event Table. The arrow shows which task
receives control and can be activated. These control flows can be also regarded as a special case
of message transfer, that of a message which carries virtually no information. The only
information transferred is a signal, meaning that the previous task is complete.

2.2.3 Timers

The third kind of events are time related events or Timer Events. Timer events are not created
by tasks. They appear at certain time moments from an independent timer, which is represented
as a small clock. The time moment at which the clock is activated is specified in the definition
of the timer event. The timer arrow points to a task which receives the timer signal.

Tasks are not able to produce timer events as an output. They can only receive timer events as
their inputs.

Timer definitions are specified in the Event Table. The next figure depicts a fragment of an
Event Table including several precise definitions of timer events:

The definition of the timer EveryMorning means that this timer event will occur every day at 9
a.m. (see column Type).

The next timer event From5to6pm will occur daily at 5 p.m. and will continue for 1 hour. The
duration of the event is defined in a column Persistence.

The next timer event Every2min will repeat periodically every 2 minutes.

A more detailed explanation of timer definitions can be found in chapter 14.

As the BM language is semiformal by nature, timer names should also be assigned carefully.
Without seeing the formal definition, one should be able to guess the intended activation times
for the timer, such as in our example above.

Task A

Timer1

EveryMorning Timer TIME("*.*.* (09:00)")

From5to6pm Timer TIME("*.*.* (17:00)") "1h"

Every2min Timer REPETITION("2m")

Event name: Category: Data type: Persistence
interval:

Transfer time: Description:
Main Concepts of Business Modeling 11

•
•
•
•
•

12

•
•
•
•
•

At higher levels of the business model, we may not intend to describe the processes precisely,
therefore the exact name of timer events will be difficult establish. If we do not know if
something will happen Every Morning or Every Monday we can use any suitable more or less
neutral timer name, for example, Appropriate moment, Timely, etc.

At the end of this section we have to add that a single task can produce more than one event as
its output and several identical events from one task can be sent to different receiver tasks.
Similarly, one task can have several input events and they can arrive from different tasks and
some of them may have identical names:

2.3 Task components

The next fundamental concept of GRAPES-BM language is the triggering condition. The
triggering condition of one task describes a specific combination of input events which is
necessary (but still not sufficient since a performer is also required) to start the task. Let us
consider an example:

In this example, the triggering condition E & F & G means that all input events E, F and G are
needed to the start Task B (they all are AND-ed). In this case the same triggering condition can
be defined in abbreviated form - with one ‘&’ or ‘AND’:

Task B Task C

Task A

Task D

Task P Task Q

Task S

Task R

Message E Message E Message F Message F

Task A

Task B
E & F & G

GE F

Task A

Task B
AND

Task A

Task B
&

F G EF G E
Chapter 2

Note that each input event E, F and G forms a separate queue before a task. This applies to both
transfer events and control flow events. The queue is arranged according to the FIFO principle
(first in, first out). This queue of input events is easier to understand if we imagine all events in
the queue as the arrival of physical objects, which remain in queue until they are consumed or
until their persistence interval (if specified) expires.

The situation is only slightly different for timer events; they wait in a task queue for the specified
persistence time interval. If no persistence interval is specified, and the timer event is not
consumed at the time instant that it appears, the timer event disappears. In the previous
example, the timer From5to6 produces events for the task between 5 p.m. and 6 p.m. and
disappears at 6 p.m. (if it not consumed by the task earlier).

Let us return to the transfer events E, F and G. The triggering condition E & F & G becomes
true (triggers) if all mentioned events E, F and G are available in the input queues of Task B.
When Task B starts, it consumes the first instance of each event from each queue with the
corresponding name.

The verb ‘consumes’ means that the task takes these events (or the corresponding transfer
objects) from the input queue and processes them according to the task specification. If the task
had a name Assemble and the events were ‘supplies of parts E, F and G’, then the task would take
from the queues one instance of each part (E, F and G) and assemble them into one unit which
will show up in the output of this task.

If there are no events in the input queues, then the task waits for them.

Similarly, triggering conditions may include OR connectors which means that any single
incoming event is sufficient to start a task. Alternative representation forms of the OR triggering
condition are as follows:

More complex triggering conditions are also allowed, e.g. E & (F | G), however, the expression
should be composed without negation (NOT) signs.

Let us consider another frequently used triggering condition:

Task A Task A Task A

Task B
OR

Task B
E OR F OR G

Task B
E | F | G

F G EF G E F G E

Task A

Task B
E AND ALL G

E G
Main Concepts of Business Modeling 13

•
•
•
•
•

14

•
•
•
•
•

Task B can have 2 possible input event flows with the triggering condition E & ALL G. The
keyword ALL means that the task will be triggered if there is at least one instance of event E and
one instance of event G at the input of the task. When Task B starts, it will consume one instance
from queue E and ALL instances of event G which are present in the input queue at that time.

Another convention should be mentioned about control flow events. Here are two examples
with AND triggering of Task B:

In the first case Task B has 2 identical input events E. Task B will be triggered if at least one event
E (regardless of whether it arrived from Task A or Task C) and one event G will be at the input.
The situation will be different in the second example with control flow events. Task B will be
triggered only after the control flow has arrived from both Task A and Task C. In the case of
control flow events, it is assumed that each incoming control flow forms a separate queue. If
there is an AND in the triggering condition, then the task will wait for at least one control flow
event in each input queue.

Another assumption concerns output events. As we have seen, there may be several outgoing
events for each task. If a task has input events and output events with identical names, then we
will assume that the same instance of the event is forwarded through the task to the output. This
assumption is very important for the transfer and processing of information. Such a transferred
event could be interpreted as a document which is used by the performer of the task (the task
may be simply to read it) and is then forwarded to the next task.

A similar assumption is made in the case of the ALL keyword. If a task has an output event with
a name which is used after the ALL keyword in the input triggering condition, then all incoming
events are forwarded to the output of the task.

The next important part of a task is the performer. The performer expression and triggering
conditions together form the conditions under which a task can start.

In this example of Task A we see that the triggering conditions are & and the performers of the
task are both Clerk & PC. Alternative performer combinations can be described by more
complex logical expressions including AND and OR connectors. The use of the ‘negation’ sign is

Task A

Task B
AND

Task A

Task B
AND

Task C Task C

E G E

Task A
&
Clerk & PC
Chapter 2

forbidden in this version of the language. Thus, to start a task we have to combine two logical
expressions with AND between them - one for the triggering conditions of incoming events and
the other - for performers of the task.

Another attribute of a task is its duration. In this example the specified duration of Task A is
exactly 2 hours:

Thus we have completed an overview on the main formal components of a task:

• name of a task;

• triggering condition;

• performer;

• duration.

The main content of a task is the ‘piece of work’ to be done within the task. However, this
activity is not formally specified in the business model. The content of a task should be
understood from its name, any brief comments about it and the context of the task.

The comments on the task, its so-called “description”, is placed below the task name, usually in
a smaller font:

The name and brief comments on a task will not always provide enough information about the
task. Therefore each task has a separate TD (Task Details Diagram), where more information,
including a number of additional attributes of the task can be added. A more detailed discussion
of TD diagrams is included in chapters 7 and 15.

Task A
&
Clerk & PC
"2h"

Assemble
Assemble one
board

&
Worker
Main Concepts of Business Modeling 15

•
•
•
•
•

16

•
•
•
•
•

2.4 Data Manipulation

Data manipulation by a task is described in terms of data stores and data objects.

The data store is a persistent (independent of the current task) storage of data or materials. In
the case of an information system, the data store most likely will be converted to a database with
a certain data structure (Entity Relationship Model). On the highest levels of business models,
the data store can be used to denote an archive of data or it can also be used to represent a
warehouse or stock of goods. A data store is represented as a parallelogram with the name of the
data store inside.

The name of the data store should, if possible, reflect the contents of the store, e.g. Archive of
Applications, Customer Data, Parts of Type A.

Here we see a very typical feature of business modeling: the same symbol is used at higher levels
of a model to denote the storage of physical objects, but on the lower levels of information
system specification, this store symbol represents a database.

Data store symbols always should be connected to one or several tasks. If we do not want to
specify the direction of information exchange between a task and a data store, we represent it
graphically as a simple (non-directional) line:

A small circle at the end of the connecting line near the data store depicts that materials (or
information) will be inserted into the store.

The line with a circle can be thought of as a special type of arrow pointing in the direction in
which access is allowed. If the materials (or information) are retrieved from the store, we will
depict this with a circle on the line near the task.

Name

Task A Archive

Task A Archive

Task A Archive
Chapter 2

These connecting lines are called Access Paths. They may also have a name, which is supposed
to describe the co-operation between a task and a data store, for example:

Data Objects are similar to data stores. However, there are two major differences. Firstly, data
objects represent only one object, whereas a data store could contain many objects of the same
or of different types. Secondly, one particular data object exists only during one business
transaction. (By business transaction informally we can understand a chain of connected tasks.
A more precise definition will be provided later in chapter 9). From the viewpoint of
information system specification, data objects will correspond to common files or variables - one
task fills in the information, another task retrieves it. On the upper levels of the model, data
objects should be used as a physical thing (e.g. a part in a production line) that is created by one
task and used by another task.

Data objects also have a double nature; they can represent physical objects as well as pure
information. Data objects are depicted as rectangles:

The co-operation between data objects and tasks also can be described by access paths:

This figure describes the following situation. Task A creates object Letter and transfers control
to Task B. Execution of Task B includes retrieval of the Letter.

Of course, this situation can be described without a data object Letter - by using the transfer of
message Letter directly between tasks A and B.

Task A Archive

retrieve customer
address

Name

Task A

Task B

Letter

Task A

Task B

Letter
Main Concepts of Business Modeling 17

•
•
•
•
•

18

•
•
•
•
•

These examples show that there is a similarity between data objects and messages. When
modeling, almost every situation can be modeled alternatively by transfer of messages or by
storing them in data objects. There may be situations when it is more convenient to describe
business processes in terms of tasks and data objects, instead of messages. For example, if a
performer of Task A does not send a Letter to the performer of Task B directly, but only leaves it
in a place that is accessible during the execution of Task B.

However, these 2 description forms are alternatives, if only the graphical representation of
model is required. The Simulator (if needed at a later stage of project) will distinguish them (it
will simulate the transfer of messages, but will not support in Version 4.0 any kind of data
manipulation with data objects or with data stores).
Chapter 2

3

Chapter 3
Business Process Description

Business Process usually means a chain of tasks that produce a result which is valuable to some
hypothetical customer. In GRAPES-BM, a business process is a gradually refined description of
a business activity (task) in terms of:

• smaller tasks (subtasks - more or less self-explanatory elementary tasks);

• events;

• data stores and data objects (if necessary).

Each of these were discussed in the previous chapter.

Let us first look at a simple example of a business process.

In this example we shall model a small Office whose primary function is customer service. The
Office consists of a Chief, a Secretary and a PC.

We shall describe just one aspect of the activities in the office - the processing of incoming mail.
The model could be of a law office, however, the business process is so simple and general, that
it would apply to any other business unit providing written answers to customer inquiries.

The Office receives letters (written Queries), the Secretary registers them and afterwards the Chief
and Secretary together prepare the Answer. Then the Secretary uses the PC to type and print the
answer which is sent to the Customer.

In Figure 3-1 “Business process Query Processing” the processing of customer queries has been
represented by means of an GRAPES-BM diagram called a Business Process Diagram (BP).

Office

Secretary Chief PC
19

•
•
•
•
•

20

•
•
•
•
•

Figure 3-1: Business process Query Processing

This diagram will be intuitively understandable to most people, even without reading the
previous chapter. You will note that some of the tasks have been represented with dashed lines,
since these are external tasks performed by external objects. External here is everything outside
of the Office, e.g. a Customer and all activities performed by a Customer.

In Figure 3-2 “More detailed one level view of Query Processing” the same query processing is
described on a more detailed level. This diagram also is self-explanatory and does not require
detailed comments.

Register
Paper based

Send Query
Customer

Archive
Computer based

Register and Forward
Query

Secretary

Prepare Answer
Chief & Secretary

Receive Answer
Customer

Send Answer
AND
Secretary & PC

Query

Query

Query Draft Answer

Answer

Query and Copy of Answer

Query
Chapter 3

Figure 3-2: More detailed one level view of Query Processing

Forward to Chief
&
Secretary

Forward Immediately
Secretary

Assess Query
Chief

Send Question
&
Secretary

Prepare Draft Answer
OR
Chief

Type Answer
Secretary

Send Answer
Secretary

Analyze Query
Secretary

UrgentRegular

Review Not Needed Review Needed

Answer Question
Reviewer

Questions Clear

Receive Answer
Customer

Register
Paper basedRegister Query

Secretary

Analyze Review
&
Chief

Archive Answer
&
Secretary

Coffee Break
Secretary

Archive
Computer based

Send Query
Customer

Find Reviewer
Select reviewer and question
Chief

More Questions

Query

Query

At 5 PM

Answer

Answer

Query

QueryQuery

QuestionQuery Reviewer Address

Question

Review

Query
Query

Query and Review

Query

Query

Draft Answer

Query

Copy of Answer
Business Process Description 21

•
•
•
•
•

22

•
•
•
•
•

Chapter 3

4

Chapter 4
Organization Structure

In order to fully understand an organization it is often worthwhile to create a description of its
structure, i.e., an Organization chart. In GRAPES-BM an ORG diagram is used.

In the previous example of Office, the organization structure was represented as an ORG
diagram. ORG diagrams are represented as trees with the following elements:

The following is an example of a more complex ORG diagram:

Single element Multiple element Description

Organization Unit (e.g. Office, department, production
line)

Position (e.g. Secretary, Chief, Programmer, etc.)

Resource (e.g. a car, PC, software module, etc.)

Table 4-1: Elements of ORG diagram

Name Name

Name Name

Name Name

Office
(more complex)

Chief Department A

Head

Clerk
Instances: 5

PC
Instances: 3

Department B

Head

Clerk
Instances: 10

PC
Instances: 12

Car
Instances: 2
23

•
•
•
•
•

24

•
•
•
•
•

It represents an Office with 2 departments and 2 Cars. Department A has a Head, 5 Clerks and
3 PCs. Department B includes 10 Clerks and 12 PCs.

More details on ORG diagrams can be found in Chapter 12.
Chapter 4

5

Chapter 5
Components of the Business Model

The previous chapters include some insights into business processes (BP diagrams) and ORG
diagrams. These two are the main diagrams used within a business model, however, we need
several other diagrams to accurately describe business systems in greater detail.

In GRADE, a set of hierarchically arranged diagrams of several types is called a Business Model.
This hierarchy is represented in Figure 5-1 “Structure of a flat business model” and Figure 5-
2 “Structured Business Model” using ORG diagram notation.

Figure 5-1: Structure of a flat business model

Legend:

Parts of business model:

Main diagrams:

Multiple elements:

Additional diagrams:

Business Model

Organization
Structure
Submodel

ORG diagram
organization
chart

CMP table
competencies

Process submodel

Primary Task

BP diagram
task
refinement in
business
process
diagram

TD diagram
task details

Elementary
Task

TD diagram
task details

PD diagram
task refinement
in process
diagram

AT table
access to data
stores

Events

ET table
description
of events

Task types

ATR
table

attributes
of task
type

Data
submodel

DD diagram
definition of
datatypes

ER diagram
Entity
Relationship
model
(structure
of datastores)

SP table
simulation
parameters

VT table
global
variables
25

•
•
•
•
•

26

•
•
•
•
•

In these figures we see that the Business Model consists of the following:

• organizational structure submodel;

• process submodel;

• data submodel.

A description of organizational structure and its attributes can be obtained using two types of
diagrams - the ORG diagrams and (if necessary) the Competence (CMP) Table. The CMP
table contains a list of all competencies used within the business model - see Chapter 12 for
details.

The process submodel starts with primary tasks. Each primary task is described by Business
Process (BP) Diagram and, if necessary, Task Details (TD) Diagram.

TD diagrams of the primary tasks provide a general description of the main activities of the
business system. More details about TD diagrams are provided in chapter 15.

Each primary task is structured as a chain of subtasks in BP diagrams, which are the main
components of a Business Model. The general description of a subtask is included in the next
level TD diagram. If this task is not yet detailed enough to be considered as self-explanatory,
then further refinement into subtasks in the next level BP may follow. Such gradual refinement
of tasks goes down to a level where each task is self-explanatory to developers and readers of the
business model. These lowest level tasks are called elementary tasks.

Figure 5-1 “Structure of a flat business model” depicts a case where the primary task is refined into
tasks that can be considered elementary tasks in the first (and only one) level BP diagram. The notion
of an elementary task has no precise definition and should be understood intuitively within the
context of the model. The meaning of elementary task should correspond to the definition used by
the reader/user of the diagram. It is important that the reader considers these tasks fully
understandable or that at this level of abstraction, more specific details on these tasks are not of
interest. When the primary task has been refined into elementary tasks in the first level BP, such a
model is called a flat model.

Figure 5-2 “Structured Business Model” depicts a case where subtasks obtained as a result of the
refinement of the given primary task through the “first level” BP diagram are not yet elementary. Here
the primary tasks are refined into subtasks. Each subtask has its own ‘task chain’ represented as a
second level BP diagram. The general specifications and interfaces of these subtasks are represented
in the second level TD diagrams. It is assumed in Figure 5-2 “Structured Business Model” that the
2nd level subtasks obtained in the aforementioned way are elementary and further structuring
through BP diagrams is not required. We shall denote such business models and the “higher level”
business processes as structured.

In Figure 5-2 “Structured Business Model” the depth of structuring is two, but in general, the
depth can and often will be more than two and it can differ for different primary tasks of the
same business model. For more details on structuring of business processes see chapter 6.

Let us consider now briefly other diagrams.
Chapter 5

Events appear in the business model during the refinement (in BP diagrams) of primary tasks.
However, BP diagrams have no space for a detailed description of events. A detailed description
of an event would include at least the event type of the given event, and perhaps additional
attributes that more fully describe it. These and other details about events are included in a
global (model-wide) Event Table (ET) (see more details in chapter 14). There is just one event
table in a business model and each event is described globally for the entire business model. One
particular event may be used as an input or an output of several tasks, and therefore it is not
possible to associate the definition of an event with a particular task.
Components of the Business Model 27

•
•
•
•
•

28

•
•
•
•
•

Figure 5-2: Structured Business Model

Legend:

Parts of business model:

Main diagrams:

Multiple elements:

Additional diagrams:

Business
Model

Organization
Structure
Submodel

ORG
diagram

organization
chart

CMP table
competencies

Process submodel

Primary Task

BP diagram
task
refinement in
business
process
diagram

TD diagram
task details

Subtask

BP
diagram

task
refinement
in business
process
diagram

TD
diagram

task details

Elementary
Task

TD
diagram

task details

PD
diagram

task
refinement
in process
diagram

AT table
access to
data stores

Events

ET table
description
of events

Task types

ATR
table

attributes
of task
type

Data
submodel

DD diagram
definition
of data
types

ER diagram
Entity
Relationship
model
(structure of
datastores)

SP table
simulation
parameters

VT table
global
variables
Chapter 5

DD and ER Diagrams are used to define data types and Entity - Relationship models. These
concepts also are global within a business model.

Each task may have one Access Table (AT) that describes the co-operation of the task with
various data stores. These tables typically are used at lower levels of the business model where
data manipulation is an issue for the specification of an information system. On higher levels of
the business model they are used rarely.

Access Paths to Data Objects have no need for Access Tables because the name of the only
accessible data object is already shown within the Data Object symbol.

The whole business model may have one or several Attribute Tables (ATR). Each ATR table
includes attributes for one group of similar tasks. This enables the user to create user defined
attributes for a number of tasks centrally - in one ATR table. Because of these tables it is not
necessary to redefine attributes in each task. The task description need only have a reference to
the corresponding ATR table (see chapter 15).

Simulation Parameter (SP) tables is used to describe named constants that can be referenced in
the definitions of tasks and events (e.g., duration, persistence interval, etc.) and used during the
simulation of the model.

Variable Table (VT) describes variables that can be used in the assign section of tasks and can
be referenced in GRAPES-BM expressions. There is only one VT in a business model, so all
variables are global. They are used for simulation purpose only. These variables can be used to
either control the behavior of a model based on global variables, or accumulate statistics.

One more additional diagram is the Process Diagram (PD). From the GRAPES-BM point of
view this diagram is just a graphical comment developed using the GRAPES - 86 or
GRAPES/4GL language and containing a description of the internal logic of tasks (especially
elementary ones).

Thus we have mentioned briefly all diagrams used in GRAPES-BM. However, the logical
hierarchy of these diagrams and tables can be also considered as a specific table or, more
precisely, as a diagram tree. This tree represents the logical structure of the business model and
serves also as a table of contents. This diagram tree is a central part of the business model within
the business modeling tool GRADE. The tree is displayed to the user of GRADE each time the
business model is to be opened and can be used to navigate quickly to the desired task or task
chain.

Figure 5-3 depicts the general hierarchy of diagrams and tables shown in Figure 5-2 “Structured
Business Model”.

The gray shaded background of some rectangles, means that these diagrams or tables are filled
in, saved and used for further model refinement. For a viewer of the business model, the gray
background is an indicator that these diagrams are not empty and should be opened.
Components of the Business Model 29

•
•
•
•
•

30

•
•
•
•
•

Figure 5-3: General hierarchy of diagrams in the GRADE model tree

Figure 5-4 “Diagram tree of business model Office” depicts a diagram tree for the Office business
model.

BUSINESS MODEL System NameBMCMT VT ET CMP SP

Name1ORGCMT

Name2ORGCMT

TYPE Name of Task Type1ATRCMT

TYPE Name of Task Type2ATRCMT

ER model nameERCMT

DATATYPES Diagram nameDDCMT

TASK Primary Task 1BPCMT TD AT PD

TASK Elementary Task 1 1BPCMT TD AT PD

TASK Elementary Task 1 2BPCMT TD AT PD

TASK Primary Task 2BPCMT TD AT PD

TASK Elementary Task 2 1BPCMT TD AT PD

TASK Subtask 2 2BPCMT TD AT PD

TASK Elementary Task 2 2 1BPCMT TD AT PD

TASK Elementary Task 2 2 2BPCMT TD AT PD

TASK Elementary Task 2 2 3BPCMT TD AT PD
Chapter 5

Figure 5-4: Diagram tree of business model Office

The contents of the Office business model diagrams are represented by Figure 5-5 “ORG
Diagram of the Office”-Figure 5-11 “TD diagram of the subtask Analyze Query”. Three new
graphical symbols appear in these diagrams for the first time.

For the description of the interface, reference symbols are used. The reference symbols are
depicted with a dashed line rectangular frame. They include the name of the neighboring task
(or timer symbol) which is connected to the task under consideration in the previous level:

BUSINESS MODEL OfficeBMCMT VT ET CMP SP

OfficeORGCMT

TASK Query ProcessingBPCMT TD AT PD

TASK Analyze QueryBPCMT TD AT PD

TASK Analyze ReviewBPCMT TD AT PD

TASK Answer QuestionBPCMT TD AT PD

TASK Archive AnswerBPCMT TD AT PD

TASK Assess QueryBPCMT TD AT PD

TASK Coffee BreakBPCMT TD AT PD

TASK Find ReviewerBPCMT TD AT PD

TASK Forward ImmediatelyBPCMT TD AT PD

TASK Forward to ChiefBPCMT TD AT PD

TASK Prepare Draft AnswerBPCMT TD AT PD

TASK Receive AnswerBPCMT TD AT PD

TASK Register QueryBPCMT TD AT PD

TASK Send AnswerBPCMT TD AT PD

TASK Send QueryBPCMT TD AT PD

TASK Send QuestionBPCMT TD AT PD

TASK Type AnswerBPCMT TD AT PD

A A

B1

B2

CC

B

e

f

e

f

t t
Components of the Business Model 31

•
•
•
•
•

32

•
•
•
•
•

As seen in the previous figures, there are three types of reference symbols:

Figure 5-5: ORG Diagram of the Office

Figure 5-6: ET of the Office (obtained automatically)

Symbol Meaning

reference to internal task;

reference to external task;

reference to timer.

Table 5-1: Reference symbols

Name

Name

Office

Chief Secretary

Heater

PC

Office and Environment

Office

Customer

Reviewer

Answer Message

At 5 PM Timer

Copy of Answer Message

Draft Answer Message

Query Message

Query and Review Message

Question Message

Review Message

Reviewer Address Message

Event name: Category: Data type: Transfer time: Description:
Chapter 5

Figure 5-7: Business Process Query Processing

Forward to Chief
&
Secretary

Forward Immediately
Secretary

Assess Query
Chief

Send Question
&
Secretary

Prepare Draft Answer
OR
Chief

Type Answer
Secretary

Send Answer
Secretary

Analyze Query
Secretary

UrgentRegular

Review Not Needed Review Needed

Answer Question
Reviewer

Questions Clear

Receive Answer
Customer

Register
Paper basedRegister Query

Secretary

Analyze Review
&
Chief

Archive Answer
&
Secretary

Coffee Break
Secretary

Archive
Computer based

Send Query
Customer

Find Reviewer
Select reviewer and question
Chief

More Questions

Query

Query

At 5 PM

Answer

Answer

Query

QueryQuery

QuestionQuery Reviewer Address

Question

Review

Query
Query

Query and Review

Query

Query

Draft Answer

Query

Copy of Answer
Components of the Business Model 33

•
•
•
•
•

34

•
•
•
•
•

Figure 5-8: Task Details Diagram of the primary task Query Processing

Figure 5-9: TD diagram of the subtask Forward to Chief

Figure 5-10: TD diagram of the subtask Register Query

Task: Query_Processing
Description:
The task describes one aspect of the office
activities - processing of the incoming mail.
Namely, the office receives letters, secretary

registers them and afterwards the chief and
the secretary together make an answer. Then
the secretary processes the answer on a PC
and sends it to the customer.

Analyze Query

Assess Query

Task: Forward to Chief
Triggering condition:
AND
Performer:
Secretary
Description:
This is elementary task

Query

Query
At 5 PM

Send Query

Analyze Query

Task: Register Query
Performer:
Secretary
Description:
This is elementary task

Register
Paper based

Query

Query
Chapter 5

Figure 5-11: TD diagram of the subtask Analyze Query

Forward Immediately

Register Query

UrgentRegular

Forward to Chief

Task: Analyze Query
Performer:
Secretary
Description:
This is elementary task

QueryQuery

Query
Components of the Business Model 35

•
•
•
•
•

36

•
•
•
•
•

Chapter 5

6

Chapter 6
Structuring of Business Processes

The structuring of a business model means the step-wise refinement of tasks. At higher levels of
system description, we only use a rough business model including the primary tasks and major
parts (subtasks). On lower levels, these tasks and subtasks are described as separate business
processes refining them into more detailed subtasks. This continues until we reach the desired
level of detail.

Let us discuss again the example from chapter 3. This example is represented in Figures 3-1 and
3-2. If we compare these examples we notice some features of structured description. The high
level diagram above is used as a preliminary description or intermediate step that facilitates
obtaining a more detailed diagram. If we follow this approach the first diagram will be discarded
at a later stage of the project.

The GRAPES-BM language provides the possibility to preserve the high level description of a
system while keeping its structure and subordinated parts consistent. The main problem here is
to properly describe the interface between tasks on different levels. Now we will describe the
same example structurally according to GRAPES-BM.

The model tree of the structured description is depicted in Figure 6-1 “Diagram (Model) tree
of Query Processing”. Here we have just one primary task - Query Processing.

A high level description of this task is depicted in Figure 6-2 “Business Process Query
Processing”. This is very similar to the BP depicted in Figure 3-1. The only difference is shown
in the Send Answer task - more precise syntax has been used to describe the triggering condition.

In Figure 6-2 “Business Process Query Processing” we see the following three high level tasks:
Register and Forward Query, Prepare Answer and Send Answer.
37

•
•
•
•
•

38

•
•
•
•
•

Figure 6-1: Diagram (Model) tree of Query Processing

BUSINESS MODEL Query ProcessingBMCMT VT ET CMP SP

Query ProcessingORGCMT

TASK Query ProcessingBPCMT TD AT PD

TASK Prepare AnswerBPCMT TD AT PD

TASK Analyze ReviewBPCMT TD AT PD

TASK Answer QuestionBPCMT TD AT PD

TASK Assess QueryBPCMT TD AT PD

TASK Find ReviewerBPCMT TD AT PD

TASK Prepare Draft AnswerBPCMT TD AT PD

TASK Send QuestionBPCMT TD AT PD

TASK Receive AnswerBPCMT TD AT PD

TASK Register and Forward QueryBPCMT TD AT PD

TASK Analyze QueryBPCMT TD AT PD

TASK Forward ImmediatelyBPCMT TD AT PD

TASK Forward to ChiefBPCMT TD AT PD

TASK Register QueryBPCMT TD AT PD

TASK Send AnswerBPCMT TD AT PD

TASK Archive AnswerBPCMT TD AT PD

TASK Coffee BreakBPCMT TD AT PD

TASK Brew CoffeeBPCMT TD AT PD

TASK Heat WaterBPCMT TD AT PD

TASK Pour in Cup and Drink CoffeeBPCMT TD AT PD

TASK Pour Water in HeaterBPCMT TD AT PD

TASK Prepare Coffee for CoffeepotBPCMT TD AT PD

TASK Send to CustomerBPCMT TD AT PD

TASK Type AnswerBPCMT TD AT PD

TASK Send QueryBPCMT TD AT PD
Chapter 6

Figure 6-2: Business Process Query Processing

In Figure 6-3 “BP Register and Forward Query”, Figure 6-4 and Figure 6-5 we can view these
3 high level subtasks in greater detail. These refinements include correct descriptions of the
interfaces between these levels.

Register
Paper based

Archive
Computer based

Send Query
Customer

1

Register and Forward
Query

Secretary

2

Prepare Answer
Chief & Secretary

3

Send Answer
AND
Secretary & PC

4

Receive Answer
Customer

5

Query

Query

Query Draft Answer

Answer

Query

Query and
Copy of
Answer
Structuring of Business Processes 39

•
•
•
•
•

40

•
•
•
•
•

Figure 6-3: BP Register and Forward Query

These BP diagrams have a number of referenced tasks. For example, in the BP Register and
Forward Query (Figure 6-3 “BP Register and Forward Query”) we see reference to the external
task Send Query and two references to a higher level internal task Prepare Answer. The timer At
5 PM is defined on the second level only. We could also represent the timer in the higher level
diagram. Then we would need a reference to the same timer on the 2nd level.

It is easy to create a flat model from this set of structured diagrams. The flat model would be
missing the high-level view of the business process. The flat model obtained would be the same
as shown in Figure 3-2.

Prepare AnswerPrepare Answer

UrgentRegular

Register
Paper based

Send Query

Register Query
Secretary AND PC

2.1

Analyze Query
Secretary

2.2

Forward to Chief
AND
Secretary

2.3

Forward Immediately
Secretary

2.4

Query

QueryQuery

Query

At 5 PM

Query

Query

Query
Chapter 6

Figure 6-4: BP Send Answer

Receive Answer

Archive
Computer based

Prepare Answer Prepare Answer

Type Answer
AND
Secretary

4.1

Send to Customer
Secretary

4.2

Archive Answer
AND
Secretary

4.3

Coffee Break
Secretary

4.4

Answer

Answer

Query

Copy of Answer

Query

Draft Answer

Query and Copy
of Answer
Structuring of Business Processes 41

•
•
•
•
•

42

•
•
•
•
•

Figure 6-5: BP Prepare Answer

Now let us assume that all tasks in these diagrams are self-explanatory (elementary) except for
the last task in Send Answer process - the Coffee Break task. The further refinement of this task
is depicted in Figure 6-6 “BP Coffee Break”, which details the ritual of preparing coffee before
coffee machines appeared.

Send Answer Send Answer

Register and Forward
Query

Review Needed

Question Clear
More Questions

Review Not Needed

Assess Query
Chief

3.1

Find Reviewer
Select reviewer and question
Chief

3.2

Send Question
AND
Secretary

3.3

Analyze Review
AND
Chief

3.4

Prepare Draft Answer
OR
Chief

3.5

Answer Question
Reviewer

3.6

Query

Query

Draft AnswerQuery

Query

Question

Question

Query

Query and Review

Reviewer Address

Query

Review
Chapter 6

Here the reference leads to the Archive Answer task which is a neighbor of Coffee Break on the
2nd level. Only a control flow joins these fragments. This can be interpreted as “follows after”.
The sub-process Coffee Break is different from the previously modeled tasks as it represents a
production process of sorts, whereas the previous examples were information processes.

Figure 6-6: BP Coffee Break

The 1st elementary task - Pour Water in Heater - is done by the Secretary. Two tasks are then
executed in parallel: Prepare Coffee for Coffeepot (by Secretary) and Heat Water (by Heater).

Here we also see a specific usage of the data store - it represents the storage of coffee. This would
be quite typical when modeling production processes. As it was mentioned in chapter 2, the
symbols for data stores and data objects can be used to represent the storage of both information
and material objects, e.g. a warehouse.

The next task is Brew Coffee. This task is complete when the Coffee Ready event occurs. Events
like Coffee Ready and Water Boils are used here to describe the states of the system, or objects
such as water or coffee, after the corresponding task is completed. Thus, events in GRAPES-BM
can also be used to represent transitions between states.

The previous examples present yet another feature of GRAPES-BM - the possibility to assign
so-called alternative (or “short”) names to task occurrences in BP diagrams. The alternative
name is placed in the top right corner of a task symbol by default. Usually they are numbers or

Package of Coffee

Archive Answer

Pour Water in Heater
and switch heater on
Secretary

4.4.1

Heat Water
Heater

4.4.2
Prepare Coffee for Coffeepot

Secretary

4.4.3

Brew Coffee
AND
Secretary

4.4.4

Pour in Cup and Drink Coffee
Secretary

4.4.5

Water Boils Ground Coffee

Coffee Ready
Structuring of Business Processes 43

•
•
•
•
•

44

•
•
•
•
•

sequences of numbers separated by dots denoting the number of the task in the diagram
hierarchy. Thus, by just having a glance at a BP diagram, we can instantly determine, to which
level in the hierarchy the diagram corresponds.

In conclusion, a few more words on the interfaces between different levels of a business process.
These interfaces - the references to neighboring tasks - are supported by the GRADE-BM tool
to a significant extent. The tool automatically prompts the references to neighboring tasks when
we start building a new refinement of a previous-level task by means of a BP diagram. See the
GRADE V 4.0 User Guide for more details.
Chapter 6

7

Chapter 7
Default Structuring of the Business Model

The previous example with Query Processing was a simplified example with only one primary
task. In general, the Business Model of a system may include several primary tasks (see model
tree in Figure 5-3 “General hierarchy of diagrams in the GRADE model tree”).

In most cases, these primary tasks will be independent of each other. In some cases, they can
communicate via a common data store. However, there may be exceptions when primary tasks
need to exchange messages among themselves. To handle such situations with the typical top-
down approach used so far, we would need to introduce one more super-primary task above all
others and draw a task chain (BP) based on the other primary tasks. This super-top-level BP
would show the transfer of messages between primary tasks. Such an approach would force us
to insert one more level of tasks and one more BP in the model tree.

If we do not want to create this fictitious level of tasks in addition to the real primary tasks
(business transactions) we can use another feature enabling message transfer directly between
primary tasks within one business model.

Let us take a look at the same example with Query Processing in Office with the assumption that
there are three primary tasks defined: Register and Forward Query, Prepare Answer and Send
Answer (see model tree in Figure 7-1 “Office with three primary tasks”). The branch under the
task Coffee Break is collapsed. Additionally we know that there are messages exchanged between
these tasks. In this version of Office, we will consider three Business Process Diagrams as
represented in Figures 6-3, 6-4 and 6-5.

The transfer of messages will take place as shown in Figure 6-2. To provide this kind of message
transfer we have to add necessary references manually in the corresponding TD diagrams. The
contents of these TD diagrams should be created manually exactly as depicted in Figure 7-
2 “TD Register and Forward Query” - Figure 7-4 “TD Send Answer” (only the task names and
interfaces are significant here, the other elements such as Performer, Description etc. are
optional). Then the exchange of messages will happen exactly in the same way as in the BP
Query Processing (see Figure 6-2).

Further structuring of primary tasks is carried out in the same way as described in chapter 6.

In conclusion, we should remark that the co-operation between these three primary tasks is
rather intensive and the preferable structuring of this model would be with one primary task -
Query Processing (see model tree in Figure 6-1).
45

•
•
•
•
•

46

•
•
•
•
•

Figure 7-1: Office with three primary tasks

Figure 7-2: TD Register and Forward Query

BUSINESS MODEL Query_ProcessingBMCMT VT ET CMP SP

Query_ProcessingORGCMT

TASK Prepare_AnswerBPCMT TD AT PD

TASK Analyze_ReviewBPCMT TD AT PD

TASK Answer_QuestionBPCMT TD AT PD

TASK Assess_QueryBPCMT TD AT PD

TASK Find_ReviewerBPCMT TD AT PD

TASK Prepare_Draft_AnswerBPCMT TD AT PD

TASK Send_QuestionBPCMT TD AT PD

TASK Register_and_Forward_QueryBPCMT TD AT PD

TASK Analyze_QueryBPCMT TD AT PD

TASK Forward_ImmediatelyBPCMT TD AT PD

TASK Forward_to_ChiefBPCMT TD AT PD

TASK Register_QueryBPCMT TD AT PD

TASK Send_QueryBPCMT TD AT PD

TASK Send_AnswerBPCMT TD AT PD

TASK Archive_AnswerBPCMT TD AT PD

TASK Coffee_BreakBPCMT TD AT PD

TASK Receive_AnswerBPCMT TD AT PD

TASK Send_to_CustomerBPCMT TD AT PD

TASK Type_AnswerBPCMT TD AT PD

Send_Query

Register
Paper based

Prepare_Answer

Task: Register_and_Forward_Query
Performer:
Secretary
Description:
The incoming letter will be registered.
See details in the
associated BP diagram

Query

Query

Query
Chapter 7

Figure 7-3: TD Prepare Answer

Figure 7-4: TD Send Answer

Register_and_Forward
_Query

Send_Answer Send_Answer

Task: Prepare_Answer
Performer:
Chief & Secretary
Description:
Chief and Secretary prepare answer.
See details in the
associated BP diagram

Query

Query

Draft_Answer

Prepare_Answer

Receive_Answer

Prepare_Answer

Archive
Computer based

Task: Send_Answer
Triggering condition:
AND
Performer:
Secretary & PC
Description:
Secretary prints answer using PC

Query Draft_Answer

Answer

Query_and_Copy_of_Answer
Default Structuring of the Business Model 47

•
•
•
•
•

48

•
•
•
•
•

Chapter 7

8

Chapter 8
Re-use of Tasks

Quite often in real business systems, there are situations when the same task is used in more than
one business process.

Figure 8-1: Top level BP

Figure 8-2: Refinement of Task A

Task A

Task B

e

Task B

Task D

Task A1

Task A2

e

g

e

e

49

•
•
•
•
•

50

•
•
•
•
•

Figure 8-3: Refinement of Task B

Such a situation is depicted in Figure 8-1 “Top level BP”, Figure 8-2 “Refinement of Task A”
and Figure 8-3 “Refinement of Task B”: the same subtask D is used in the refinements of both
Task A and Task B.

The question arises about the BP and TD of Task D - what should be included in the references
around Task D? Another question concerns the model tree - where should we place the Task D?

In a simple situation, the diagrams of Task A1 and Task A2 would be placed under Task A and
the diagrams of Task B1 and Task B2 would be placed under Task B. Task D is common both to
Task A and Task B therefore it cannot be placed under any one of these two. Thus the solution
could be to move the Task D to a higher level, such as the level of Task A and Task B (see the
model tree in Figure 8-4 “Model tree with reusable Task D”). This enables us to include Task D
in both subordinated BP diagrams - for Task A and Task B.

Figure 8-4: Model tree with reusable Task D

Task A

Task D

Task B1

Task B2

e

g

e

BUSINESS MODEL Example 8BMCMT VT ET CMP SP

TASK Task WBPCMT TD AT PD

TASK Task ABPCMT TD AT PD

TASK Task A1BPCMT TD AT PD

TASK Task A2BPCMT TD AT PD

TASK Task BBPCMT TD AT PD

TASK Task B1BPCMT TD AT PD

TASK Task B2BPCMT TD AT PD

TASK Task DBPCMT TD AT PD

TASK Task D1BPCMT TD AT PD

TASK Task D2BPCMT TD AT PD
Chapter 8

It would be possible to move the Task D to an even higher level (the same level as Task W) and
consider it a primary task. However, from a methodology point of view, we should avoid
creating “artificial” primary tasks.

Looking at Figure 8-5 “BP of Task D” and Figure 8-6 “TD of Task D” we see the interfaces of
Task D. From the BP diagrams of Task A and Task B we see that there are 2 occurrences of Task
D. To create a correct TD for Task D, the following principle has to be applied - all the inputs
and outputs as well as references to neighboring tasks are accumulated in the TD in Figure 8-
6 “TD of Task D”. Figure 8-5 “BP of Task D” represents one possible version of a BP for such
a Task D.

Figure 8-5: BP of Task D

Figure 8-6: TD of Task D

Task D1

Task D2

Task A1,
Task A2,
Task A

Task A2,
Task B1

e

g

Task A2 ,
Task B1

Task : Task D
Description :
Common for A and B

Task A1,
Task A2 ,

Task A

e

g

Re-use of Tasks 51

•
•
•
•
•

52

•
•
•
•
•

Turning now to the less trivial situation as depicted in Figure 8-7 “Refinement of Task A” and
Figure 8-8 “Refinement of Task B”, we also see two occurrences of Task D but with different sets
of input and output events.

Figure 8-7: Refinement of Task A

Figure 8-8: Refinement of Task B

In the 1st occurrence, Task D has input events e and f and output event g. In the 2nd occurrence,
Task D has input event e and output events g and h. Such situations occur quite often in
modeling. In the TD diagram of Task D (see Figure 8-9 “TD of Task D”) all these inputs and
outputs are accumulated (the tool GRADE does it automatically).

Figure 21 -1 Graphical symbols used in data flow and BP diagrams:

Task B

Task D

Task A1

Task A2

g

ee

f

Task A

Task B1

Task B2

Task D

e

h

e

g

Chapter 8

Figure 8-9: TD of Task D

When simulating, a warning will be given because some inputs and outputs in one or another
occurrence will never be used. This will not disturb the work of the Simulator, however, this is
considered poor modeling style.

The further refinement of Task D should be based on a full set of input/output events of the task
(see BP of Task D in Figure 8-10 “BP of Task D”). Thus the specification (TD) and further
refinement (BP) of one task should be synchronized completely. This correspondence is
supported automatically by the tool.

Figure 8-10: BP of Task D

Task A2,
Task B2

Task A2,
Task A

Task A1

Task B1

Task : Task D
Description :
Common for A and B

f

gh

e

Task D1 Task D2

Task D3

Task B1

Task A1 Task A2,
Task A

Task A2,
Task B2

h g

ef
Re-use of Tasks 53

•
•
•
•
•

54

•
•
•
•
•

A few words need to be said about the triggering condition of Task D. Both occurrences of Task
D will work without problems if the triggering condition is a general OR. If the triggering
condition between input events is e AND f, then there may be problems, because not all events
required by the AND triggering condition will occur. The following convention is used to
manage this problem in a straightforward way: the AND triggering conditions concerns only
those events (including control flow events) that are mentioned in the particular occurrence of
the task.

Each new occurrence of the same task will be considered by the Simulator as another copy of
the same task. The references to neighboring tasks are used here to correctly link tasks within
task chains.
Chapter 8

9

Chapter 9
The Concept of a Transaction

The transaction is a fundamental concept in business modeling. A Business Transaction
describes a chain of activities, from the moment when an external event arrives from the outside
and initiates the transaction, until the end moment when further events and activities are
beyond our scope of interest.

In the Query Processing example (see Figure 3-2) a transaction starts with the arrival of a query
from the external actor - customer. The transaction is completed when answer is sent to the
external task Receive Answer.

A thorough understanding of transactions helps to understand a business model completely.
The transaction is also a relevant notion in simulation because often the business analyst needs
to know the time required to complete a business transaction and the total cost thereof.

How transactions are to be understood within the context of a business model is very complex.
In simple cases, which constitute the majority in business modeling, a transaction can be
recognized and understood simply by intuition.

We shall start with a simple case, explained in the context of a flat model. Here the primary task
is refined into elementary tasks in one BP diagram. None of the subtasks has refinement in lower
levels.

Let us look at the example depicted in Figure 9-1 “BP Query processing, V.1”.

In this example, Customer sends a Query and the Secretary registers it. The Answer is prepared by
the Chief and the Secretary and afterwards it is delivered back to the Customer. These tasks
dealing with processing of one Query could be naturally considered as one transaction.

Let us look at a more complex situation now (see Figure 9-2 “BP Query processing, V.2”).
55

•
•
•
•
•

56

•
•
•
•
•

Figure 9-1: BP Query processing, V.1

Receive Answer
Customer

Register Query
Secretary

Prepare Answer
Chief & Secretary

Send Answer
Secretary & PC

Send Query
Customer

Query

Answer

Query

DraftAnswer
Chapter 9

Figure 9-2: BP Query processing, V.2

Here the Query is received and registered similarly. Before producing the answer, a Copy of the
original Query is sent to an external object - the Reviewer. The DraftAnswer will be created by
the Chief and the Secretary only after the Review has returned from the Reviewer. Here,
intuitively, the processing of one incoming Query also could be considered as one transaction.
However, the question is how to detect the “real” start of the transaction, since we have a Query
coming from the Customer and a Review coming from another external Reviewer in the middle
of Query Processing. The arrival of Review should not be considered to be the start of a new
transaction.

The following criterion can be used here to define the start of transactions: a transaction starts
only when an event arrives from an external source independent of other events in the process.
By definition, such incoming events should not be initiated or caused by other events in the
process. Most typically, such independent events will be modeled as timer events occurring
independently at certain pre-set intervals, often initiating transactions in the business model.

Receive Answer
Customer

Send Query
Customer

Register Query
Secretary

Ask Review
Secretary

Send Answer
Secretary & PC

Prepare Answer
AND
Chief & Secretary

Review
Reviewer

Query

Answer

DraftAnswer

Query

Query

Copy of Query

Review
The Concept of a Transaction 57

•
•
•
•
•

58

•
•
•
•
•

From this point of view, Query can be easily distinguished from Review. The arrival of Query
does not depend on any other events in the business process. The Review from Reviewer is
initiated by a Copy of Query coming from Secretary, i.e., from mid-stream in the process.
According to this criterion, the input of the Query is the start of the transaction and Review is
not, even if it arrives from outside.

According to this criterion, timer events always start a new transaction, as they arrive from
outside, regardless of the status of the business process.

Let us look at a further version of the same example; see the following figure:

Figure 9-3: BP Query processing, V.3

Receive Answer
Customer

Review
Reviewer

Send Query
Customer

Register Query
Secretary

Ask Review
Secretary

Prepare Answer
AND
Chief & Secretary

Send Answer
Secretary & PC

Query

Query

Daily

Copy of Query

Review

In Appropriate Moment

DraftAnswer

Answer

Query
Chapter 9

Where is the start of the transaction in this example? The new elements here are timers initiating
a Query from Customer and the writing of a Review at the proper moment. Formally both of
them could be the start of a transaction. However, the task Review still is not the start of a
transaction because it also requires Copy of Query coming from Secretary. The only real start of
a transaction is the task Send Query (by Customer) because this is triggered by a timer event Daily
and is independent of everything else in the business model.

If we want to simulate the business model eventually, then all starting points of transactions
should be properly defined timer events only. If the starting point of a transaction is an external
task (like in Figure 9-1 “BP Query processing, V.1” and Figure 9-2 “BP Query processing, V.2”)
then simulation is not possible because the Simulator needs to know how often the Queries are
sent by Customer. If a business model has been created for modeling purposes only, then the
notion of transaction can be used in a broader and less formal manner.

Let us look now at the next version of the same example (see Figure 9-4 “BP Query processing,
V.4”). In this example the Customer sends Queries and the Reviewer independently sends
Reviews. Apparently the Customer delivers Queries to the Reviewer himself in a way which is not
shown within this model. Otherwise this example would not make sense. The Query and Review
are merged together in the task Prepare Answer.

Figure 9-4: BP Query processing, V.4

Receive Answer
Customer

Review
Reviewer
Nostart

Register Query
Secretary

Prepare Answer
Query & Review WHERE
Query.No = Review.No
Chief & Secretary

Send Answer
Secretary & PC

Register Review
Secretary

Send Query
Customer

Answer

DraftAnswer

ReviewQuery

Review
Query
The Concept of a Transaction 59

•
•
•
•
•

60

•
•
•
•
•

This situation is more complex. Formally we now have two independent inputs from external
tasks and both of them would start a separate transaction. However, they should be merged into
one transaction as there is just one answer prepared. Therefore, formal detection of the
transaction starting point is not possible. Still a human being is able to understand that the
reception of Query is the “real” start of transaction while receipt of Review is of secondary
importance and should not be regarded as a start of transaction.

For a situation like this, it is possible to mark one of these possible start tasks with a special
keyword NOSTART. For a user of this model as well as for the Simulator this will mean that this
input branch does not cause a new transaction in the business process.

As a result, we encounter another problem - how should we merge Queries with the appropriate
Reviews? For this case we have a special WHERE clause in the triggering condition of the task
Prepare Answer.

In order to enable the WHERE condition, a datatype should be associated with the events Query
and Review. This association can be done via the Event Table (see chapter 14). In the associated
datatypes, special fields (e.g. No for Number of queries or Number of reviews) should be created.
These fields of data types can be used to uniquely identify each instance of Query and Review.
The WHERE condition would include references to these data fields: WHERE Query.No =
Review.No. More details about this will be discussed in the chapter 15.

Now let us return to the 2nd and 3rd versions of this example (Figure 9-2 “BP Query
processing, V.2” and Figure 9-3 “BP Query processing, V.3”). We see that in these cases, the task
Prepare Answer has no WHERE condition, however, the transaction concept seems to be
understandable. How was that possible and was that correct ?

Here we encounter the principle of the default definition of a transaction. It is assumed that in
one triggering condition (unless specified otherwise) only events from one transaction may
participate. Thus in the previous versions, the 2nd and 3rd, of this example a default (unwritten)
WHERE condition is used (by default the Query and Review will be taken from the same
transaction).

9.1 Transaction Identifiers

The precise definition of a transaction is based on the Transaction Identifier (TID). At the
beginning of each transaction, the starting event is given a unique TID. This number will be
used throughout the transaction, i.e. for all events and tasks of the corresponding task chain. In
diagrams, this number is not visible and is not required by the designer. For modeling it is
enough to assume that such a TID number exists. Each new instance of the transaction will be
assigned a different TID.
Chapter 9

Furthermore, the starting task itself and all output events of this task will also be assigned the same
TID. The AND triggering condition will be TRUE only if all incoming events have the same TID. In
other words, a triggering condition E & F will take events E and Fÿfrom queue when the inputs have
identical TIDs. If a triggering condition has the ALL clause, e.g. E AND ALL F, then it is assumed that
the task consumes one event E together with all instances of event F regardless on their TIDs.

Another version of the Query Processing example could include a task Prepare Answer with Query
& ALL Reviews as a triggering condition:

This would literally mean collecting all Reviews that have arrived from the Reviewer at the
moment when the Query arrives. Some of them may concern other Queries. In such a situation
they will be consumed by the task anyway and some other Query will have no corresponding
Review available for pairing, as it may have been previously consumed by the task due to the ALL
clause in the triggering condition.

Another version could be obtained from version 4 (see Figure 9-4 “BP Query processing, V.4”)
by deleting the NOSTART keyword from the external task Review and by changing the triggering
condition of task Prepare Answer to the following: Query AND ALL Review WHERE Query.No =
Review.No:

Prepare Answer
Query & ALL Review
Chief & Secretary

ReviewQuery

Draft Answer

Prepare Answer
Query & ALL Review WHERE
Query.No = Review.No

Chief & Secretary

ReviewQuery

Draft Answer
The Concept of a Transaction 61

•
•
•
•
•

62

•
•
•
•
•

Here each Review will create a new transaction that will continue untill the task Prepare Answer.
The triggering condition of this task will reset the TID of Review and synchronise the TID of
the outgoing transaction with the incoming event Query. The TID of the outgoing Draft Answer
will be taken from the incoming Query. In both this and the previous example, the NOSTART
clause is not required and the TID of outgoing Answer will be the same as of incoming Query.

The next version of the same task shows how the TID of Review can be maintained even if there
is an ALL clause in the triggering condition:

The important point here is that the same name - Review - is used as the input and the output
event. The output Review will have the same TID as the input Review regardless of the TID of
the Query. The number of output Reviews will be the same as the number of consumed input
Reviews at the moment of triggering. Because of this default behaviour of the ALL clause, it is
permitted to have just one ALL keyword in each task.

There is also another way to deal with transactions and TIDs:

Here the keyword NOTID deletes the TID of output event e. Now this event can participate in
any AND triggering condition with arbitrary TIDs. This possibility can be used to describe co-
operation between different transactions.

Prepare Answer
Query & ALL Review
Chief & Secretary

ReviewQuery

Draft
Answer

Review

e
/NOTID
Chapter 9

9.2 End of Transaction

In a normal situation, a transaction is finished when all events with the corresponding TID
number are consumed. In the 1st version (Figure 9-1 “BP Query processing, V.1”) it is clear that
the transaction is completed when there are no more messages within the business process with
the TID of the Query that started the transaction. Thus, the last step in each transaction will be
delivering the Answer to the external Customer where the TID of this Answer will be the same
TID as the original Query. A general rule for simple cases is that the transaction is completed
when there are no more events with the TID of the transaction.

Unfortunately the end of a transaction cannot always be found so easily (see version 5 of the
same example in Figure 9-5 “BP Query processing, V.5”). The situation here is quite realistic:
the Secretary asks for the Review and switches on a timer simultaneously.

Figure 9-5: BP Query processing, V.5

Receive Answer
Customer

Send Query
Customer

Ask Review
Secretary

Send Answer
Secretary & PC

Timer1
"25d"

Prepare Answer
Query & Timeout | Query & Review
Chief & Secretary

Register Query
Secretary

Review
Reviewer

Query

Answer

DraftAnswer

Query

Query

Review

Copy of Query

Timeout
The Concept of a Transaction 63

•
•
•
•
•

64

•
•
•
•
•

Figure 9-5 “BP Query processing, V.5” includes the “artificial” task Timer1. This task has no
performer and the only function of this task is to wait 25 days and produce an output event
(Timeout). Such additional artificial or “technological” tasks are sometimes required to create a more
accurate model. Such special tasks are often required when modeling heavily regulated process, where
laws, nature or current technology dictates that a certain time elapses before a process can continue.

When the 25 days are over and the Timeout message has arrived at the task Prepare Answer the
Secretary starts to prepare the Answer regardless of the Review. This is ensured by the triggering
condition Query & Timeout | Query & Review.

Let us assume that the Timeout has happened and Secretary has sent the Answer. This transaction
is finished because the given Query is processed.

Now let us assume that the missing Review (with a TID of a finished transaction) shows up more
than 25 days later. The task Prepare Answer still will not be triggered repeatedly because there
are no more Queries available with the needed TID and new Queries will surely have different
TIDs. Thus the late Review with its TID will remain in the input queue of the task Prepare
Answer endlessly. The default end of transaction will not affect this event any more.

Such everlasting queues should be avoided. When simulating, this may be considered a serious
problem. The statistical information having to do with these discardable events will show up in
simulation statistics, producing unwanted anomalies, so there is no reason to maintain them
here in queue. Therefore, an explicit end of transaction can be assigned to a separate task:

Such an END statement in a task means that after this task, the transaction is forced to terminate
and all non-consumed events with that TID will be taken out of the queues and destroyed. In
the previous example (Figure 9-5 “BP Query processing, V.5”) such an explicit END statement
could be added to the task Send Answer. In general, such END statements can be added to any
task or also to any decision symbols of decision tasks:

Another alternative is possible: the Secretary might make Answers without the original Query on
the basis of the Review or even without it. In Version 5 (Figure 9-5 “BP Query processing, V.5”)
this means that the Query is not needed as an input event for the task Prepare Answer. If we

Send Answer
Secretary AND PC
End:

Yes
End:

Task A

No
Chapter 9

simply skip the incoming event Query, then the task would start after Timeout or after the Review
arrives. If the Review arrives after 25 days (after Timeout) then the late Review would cause
another Answer for the same Query. If we want to avoid this, then at least one control flow
should be added between the tasks Ask Review and Prepare Answer (see version 6 in Figure 9-
6 “BP Query processing, V.6”). In this case the control flow is not mentioned in the triggering
condition, however, it will be given an AND statement by default in the existing expression
Timeout | Review and thus provide one Answer to each Query.

Figure 9-6: BP Query processing, V.6

The Control Flow event is always AND-ed to the triggering condition. The only exception
(when a control flow is OR-ed with the other events of the triggering condition) is when there
is a simple OR (not e.g., Timeout OR Review) in the task.

Ask Review
Secretary

Prepare Answer
Timeout | Review
Chief & Secretary

Send Answer
Secretary & PC

Review
Reviewer

Timer1
"25d"

DraftAnswer

Copy of Query

Timeout Review
The Concept of a Transaction 65

•
•
•
•
•

66

•
•
•
•
•

Chapter 9

10

Chapter 10
Transactions in a Structured Model

In the previous chapters, we discussed structuring as a purely technological technique enabling
the fragmentation of large business processes into several levels of relatively small size (A4
format, one full screen or 7±2 elements) diagrams. In GRAPES-BM, structuring can be also
semantically meaningful for the default definition, start, and end of transactions.

It is assumed that each task chain represented in one BP defines a new business transaction. This
concerns all levels of task chains and BP diagrams. The BP diagrams of primary tasks will start
a primary transaction. All subtasks refined in a separate BP will also start, by default, another
lower level transaction which is a sub-transaction of the primary transactions. By default, each
transaction will have:

a transaction name which by default is the same as the name of corresponding BP;

a Transaction Identifier (TID) which is unique for each instance of each transaction and sub-
transaction on any level. This identifier remains invisible for users and is relevant for the
Simulation of the model.

The top level transaction will be started for each primary task according to the principles
described in chapter 9. Here we assume that each subtask is refined through subtasks and
subordinated BP diagrams down to the level of elementary tasks.

In the case of a structured business model, we should be aware of a specific situation: it is
permissible to construct business models where the starting point of a transaction (external task
or timer) is not shown in the top level BP diagram. The starting point of a transaction can be
made visible in lower level BP diagrams only. In such a situation, the top level transaction will
not start automatically and the start of the transaction should be pointed out in lower level tasks
with an additional statement START <transaction name>.

Let us look at this construction with an example.

In Figure 10-1 “BP of primary Task W and subordinated Task A with timer reference” we see
the BP diagrams of primary Task W and subordinated Task A. The top level transaction (named
Task W) will start automatically because of the timer in the top level BP diagram. This
transaction would automatically initiate a subordinated sub-transaction of Task A.
67

•
•
•
•
•

68

•
•
•
•
•

Figure 10-1: BP of primary Task W and subordinated Task A with timer reference

Figure 10-2: BP of primary Task W and subordinated Task A with explicit start of transaction

The structuring of the same situation could be described in a different way (see Figure 10-2 “BP
of primary Task W and subordinated Task A with explicit start of transaction”). This figure also
depicts two BP diagrams - for the primary Task W and the subordinated Task A. The top level
diagram does not have an explicitly depicted starting point of the transaction, therefore the
subordinated diagram, Task A, has the statement START Task W.

The principle of automatic transaction start (like in Figure 10-1 “BP of primary Task W and
subordinated Task A with timer reference”) will work in a similar way for all subordinated
transactions, corresponding to all subtasks refined in separate BP diagrams. The transactions at
the top level can be started by timer event or external task only. The subordinated transactions
on lower levels can be started also by events from neighboring diagrams via task references. As
a matter of fact this will be the most typical way of transaction start for subordinated tasks. In
order to start such sub-transactions, all the necessary events with the appropriate TIDs should
be available to fulfill the triggering condition.

Task A

Task B

t

e

Task A1

Task A2

Task B

e

g

t

Task_B

Task_A

e

Task A1
Start: Task W

Task A2

Task B

t

e

g

Chapter 10

According to these principles, we can see that the same subtask can participate in several
transactions, i.e. the input and output events of the same task can have different TIDs. This
means that a triggering condition with AND will be true only when incoming events of all
previous levels (not only of the lowest level) will have the same TID.

A transaction at a lower (or any) level will be completed when all events with the corresponding
TID will be consumed. Thus the transfer of events from one (lower level or sending) BP to
another (neighboring or receiving) BP, by default means to consume and to delete the previous
TID of this event and to assign this event another TID according to the TID of the receiving BP.

The end of a transaction can be forced by a statement END <transaction name>. This statement
can be included in the body of a task or in a decision symbol. The transaction name here by
default is the same as the name of the corresponding BP.

Sometimes structuring on multiple levels has no semantic meaning and is used for technological
purposes only. In such situations, it is not desirable to initiate lower level transactions, as they
will possibly influence the AND triggering conditions. It is possible to avoid such undesirable
transactions with a statement NOSTART. This statement should be added to all tasks that can
possibly start a new transaction within subordinated BPs.

More details about transactions can be found in the GRAPES-BM Language Reference Manual.
Transactions in a Structured Model 69

•
•
•
•
•

70

•
•
•
•
•

Chapter 10

Part II
Additional Details on Business

Modeling

11

Chapter 11
Goals and Limitations

The constructions of a BM language described so far in Part I included the absolute minimum
needed to build a simple business model. However, in further stages of system design, we need
more detailed business models that will enable the simulation of the system’s behavior, to
uncover errors, deficiencies, and bottle-necks. For this purpose we need more detailed
descriptions of the tasks and events of the system. The second part of this text will describe some
additional language constructions for more detailed business modeling.

However, before starting, we should return briefly to the concepts of business modeling and
business process re-engineering.

During the last 5 - 10 years it has become widely recognized (after great efforts towards reverse
engineering, re-engineering, down-sizing, right-sizing and so on of legacy software systems) that
changes in a business information system will not improve overall efficiency if the organizational
structure and organizational procedures remain unchanged. Having already said in Part I, why
business modeling is important, we might now refine the main goals of business re-engineering
and see how business modeling fits together with them. The goals of BPR could be defined as
follows:

• create reasonable (or even optimal) functional structures of business processes;

• obtain consistency between functional and organizational structures, and eliminate “weak
points” and “bottle necks”;

• ensure necessary IT support and homogenous information media.

The GRAPES-BM language and the GRADE/BM tool were designed and developed expressly
for the purpose of providing such support, providing both support for economic analysis of
organizations and processes and also to support the development of information systems. A
number of other tools and methodologies exist in the marketplace, which also support such
goals to varying degrees:

• Function Tree and Event Driven Process Chains approach (implemented in the ARIS tool-
set and the SAP R/3 Analyzer) which presents business processes solely in the context of
information system analysis and development;

• Function Tree and Function Net diagrams (used by Software AG tools NEW and Predict
CASE) devoted exclusively to information system development;
73

•
•
•
•
•

74

•
•
•
•
•

• Graphs of Tasks implemented in MOSAIK devoted exclusively to the economic analysis of
organizations and processes;

• Function Hierarchy and Business Process Model (Oracle Designer/2000) devoted exclusively
to information system development, and so on.

Business Modeling should not be used to formalize completely and exhaustively all tasks
performed in a system. For example, tasks like “construct automobile engine” or “manufacture
a chip for a CPU” will never be formalized completely by a business modeling language, because
special description methods and languages from the corresponding business areas will be more
suitable for this purpose. The same is true for non-trivial tasks in data processing. We do not
intend to create a sophisticated business modeling language that could compete with
programming languages or software specification languages.

The type of system to be described is irrelevant. However, a traditional application area of BM
languages would be sociotechnological systems or man-machine systems where people perform
various activities with information and physical objects using various technical appliances
(computers, production lines, etc.) for their work.

In the next chapters, we will go through topics already introduced in Part I in greater detail, so
that at the end, the user will have a good understanding of nearly all of the advanced functions
that the GRADE tool set has to offer.

Firstly, a more detailed description of the ORG diagram can be found in Chapter 12, including
alternative structuring of the model as well as a detailed review of all attributes that can be
attached to performers defined in the ORG chart.

Chapter 13 describes additional features based on the modeling of data types associated with
events. Chapter 13 should be read together with Chapter 14, as the use of data types is normally
done in conjunction with the events that carry them.

Chapters 15 and 16 go into further detail on tasks in TD diagrams, especially as they pertain to
simulation. Chapter 16 describes how branching is introduced and controlled in business
models. The features that permit the user to mix probabilistic (varied by fixed probabilities) and
deterministic (controlled by context) branching in models is also discussed.

Chapter 17 looks at an example of a Production line, to provide an example of how some of the
more complex constructions in BM can be applied to real-life modeling problems.

Chapter 18 provides a “How to” showing the user how certain types of problems, or themes in
business models, can be managed.

In conclusion Chapters 19 and 20 provide a brief Overview of the GRADE tool, as well as
outline a possible methodology that can be applied in its use.
Chapter 11

12

Chapter 12
Organization Structure Modeling

In the modeling of existing systems, the first thing to do is to describe the organization structure.
In the design of new systems, the organization structure will appear as one of the results of the
modeling exercise.

The GRAPES-BM language supports several flexible ways to describe (model) organization
structure. The main diagram used for this purpose is the ORG diagram which was briefly
introduced in Chapter 4. In this chapter we shall look at the ORG diagram in more detail.

12.1 Organization Diagram (ORG)

The ORG diagram uses special graphical symbols for Organization Unit, Position, and
Resource. Each symbol can be single or multiple and the same numbering convention applies
to all types of objects. Let us describe these using examples.

Symbol Meaning

Single organizational unit (Comp Sci Department);

Multiple organizational unit (Department); the 5 here denotes the
number of such organizational units. This number may be omitted
indicating an infinite number of instances;

Single position (Head);

Multiple position (Programmer);

Table 12-1: Examples of symbols in ORG diagram

Comp Sci Department

Department
Instances: 5

Head

Programmer
Instances: 15
75

•
•
•
•
•

76

•
•
•
•
•

The ORG diagram is built as a hierarchy of these elements and two types of relationships:
‘consists of’ and ‘owns’.

Elements may follow each other according to the following rules:

1, 2 may be followed by 1, 2, 3, 4 via consists of

1, 2, 3, 4 may be followed by 5,6 via owns

5, 6 may be followed by 5, 6 via consists of

Some examples of ORG diagrams are depicted in Figure 12-1 “Department with 2
laboratories”, Figure 12-2 “Department with 2 separate laboratories” and Figure 12-3 “ORG
Diagram with external elements and detached fragments”.

Figure 12-1: Department with 2 laboratories

Single resource (Computer No 007);

Multiple resource (Computer);

Symbol Meaning

Table 12-1: Examples of symbols in ORG diagram

Computer No 007

Computer
Instances: 25

Department

Laboratory
Instances: 2

Head

Programmer

Computer

Head Building

Floor 1

Floor 2

Car
Instances: 3
Chapter 12

Figure 12-2: Department with 2 separate laboratories

Figure 12-3: ORG Diagram with external elements and detached fragments

Figure 12-3 depicts an ORG diagram with external elements. External elements are denoted
with a dashed line rectangle and they represent objects that do not belong to the “target system”,
however they are relevant because they have a substantial impact on the activities within the
target system.

Department A

Laboratory 1
Instances: 2

Head

Programmer
Instances: 7

Computer
Instances: 8

Laboratory 2
Instances: 2

Head

Programmer
Instances: 5

Computer
Instances: 8

Head Building

Floor 1

Floor 2

Car
Instances: 3

Institute

Department A Department B Director Mainframe

Laboratory 1
Instances: 2

Head Programmer
Instances: 7

Computer
Instances: 8

Department A

Laboratory 1
Instances: 2

Laboratory 2
Instances: 2

Head Building

Floor 1

Floor 2

Car
Instances: 3

Laboratory 2
Instances: 2

Head Programmer
Instances: 5

Computer
Instances: 8
Organization Structure Modeling 77

•
•
•
•
•

78

•
•
•
•
•

A business model can contain several ORG diagrams, each which have a separate identity and
are visible in the model tree (see fig. 5-3). This provides the possibility to structure the ORG
diagrams in a sense. The first ORG diagram may be used to present a “rough” organizational
structure of an enterprise, perhaps at a Business Unit or Line of Business level. The next ORD
diagrams may be used to refine each component of this “rough” ORG diagram, ie each business
unit has its own ORG diagram. For example, we can naturally split the ORG diagram in fig.
12-3 into two ORG diagrams. The first one will show the partition of the Institute into
departments, but the second one - the structure of the department A.

One thing to note for those who use GRAPES-BM for pure modeling purposes and are not
interested in the simulatalability of the business model. Such modeles may deviate from precise
semantics of the GRAPES-BM language. One such deviation applies to ORG diagrams.
Namely, frequently we want to represent not only the organizational structure of an institution,
but also its administrative structure, by showing who is subordinated to whom. The
subordination can be represented in an ORG diagram in one of the following ways.

The GRADE ORG editor permits you to draw such a subordination. It would be interpreted
as follows:

Person manages Unit_x

Person manages Person_x

Formally speaking, such an ORG diagram is even permitted for simulatable models, though it
may lead to slightly odd results - see the Language Reference Manual to find out how the
Simulator interprets such constructs. What is not permitted for simulation - is representing both
the organizational and the administrative structure in the same business model. The implicit
duplication would make any simulation results pertaining to performers suspect.

12.2 Attributes

The elements of an ORG diagram can have the following attributes:

• name;

• number of instances (for multiple elements only);

• type:

- internal (represented as a rectangle);

Person

Unit 1 Unit 2 Unit 3

Person

Person 1 Person 2 Person 3
Chapter 12

- external (represented as a rectangle with dashed lines);

• competence;

• availability;

• cost per hour;

• efficiency level;

• name of employee (for single position only).

All of these attributes may be used formally by the GRADE Modeler and Simulator. A free text
comment can also be included in each element of the ORG diagram. The first three attributes
are self-explanatory. The following is a discussion of the other attributes listed above.

ORG elements can have competencies associated with them. The Competencies of an element
are described in a list of skills and abilities that the element possesses that may differentiate it
from other ORG elements. Each competence is described with an identifier and is separated
from other competencies of the same element by a comma:

Comp_Id_1, Comp_Id_2, …

For a programmer position the corresponding list of competencies could be:

Pascal, Ada, C_plus_plus

For a Computer resource, the list of competencies could be:

IBM_compatible_PC, More_than_80_MHz, Networking_enabled, …

The usage of competencies can be much wider than just a list of skills of a certain position or
certain person. A broader notion of competence can be used to describe any feature (property)
of any element of the ORG diagram, for example, category of employee, age of person, sex (male
or female), etc.

Figure 12-4: ORG Diagram with Competencies

Competence can be used also to define subtypes (groups) of elements. In the following example
of Club, we have an ORG diagram (see Figure 12-4 “ORG Diagram with Competencies”) with
President of the club, Secretary, Juniors (membership candidates) and Seniors (members of the
club). Let as assume that only the president and seniors are full members of the club. This fact
distinguishes these elements of the ORG diagram from others. This group of elements can be
described via the competence Club Member. Similarly, we could use competence to select club

Club

President
Competency: Club Member

Secretary Junior Seniors
Competency: Club Member
Organization Structure Modeling 79

•
•
•
•
•

80

•
•
•
•
•

members ‘having blond hair”, etc. In general these competencies are actually “used” in
simulation, to dynamically select a performer for a particular Task based on the skill set that it
has and its availability.

All competencies mentioned anywhere in an ORG diagram must be included in the
Competence Table (CMP). The GRADE toolset provides the possibility to define new
competencies in the ORG diagram, as well as in the CMP table. The CMP table is visible in the
model tree (see Figure 5-3 and Figure 5-4) to the right of the BM diagram. The CMP table
contains a list of all competencies defined in a model along with an informal description of each
competence (see Figure 12-5 “Example of CMP table”). If a competence table is created before
the ORG diagram (this is the recommended sequence for the design of a new system) then each
new element of the ORG diagram could be associated with one or several competencies required
for the business tasks.

Figure 12-5: Example of CMP table

Availability describes when the corresponding element (position or entire organization unit) is
available as a performer of a task (the working hours). The following examples show the usage
of the availability attribute in GRAPES-BM:

Availability Meaning

“(08:00-17:30)” daily between 8 a.m. and 5.30 p.m.;

“*.*.* (08:00-17:30)” the same (the 3 asterisks emphasize explicitly every year,
month and day of month);

“*.*.01” first day of each month (24 hours a day);

“*.*.01 (08:00-20:00)” first day of each month in the day time (between 8 a.m.
and 8 p.m.);

“*.06.(01-05,15-20)” yearly between June 1 and June 5 and between June 15 and
June 20 but 24 hours a day;

“*.*.(MON-FRI)” each weekday (from Monday to Friday);

“*.*.01 (08:00-17:30)” the first day of each month between 8 a.m. and 5.30 p.m.;

“*.*.(MON-FRI) (00:00-23:59)” each weekday between 0 a.m. and 12 p.m.;

“*.*.(MON,WED) (08:00-12:00, 13:00-17:00)” each Monday and Wednesday during working hours,
except for a lunch break (between 8 a.m. and noon and
between 1 p.m. and 5 p.m.);

Table 12-2: Examples of the Availability attribute

Cplus Practical experience in C++

GRAPES Practical experience in GRAPES BM

Pascal Practical experience in Pascal

Competency name: Description:
Chapter 12

From these examples we see that the availability period should be defined with day as the lowest
unit (date) or minute as the lowest unit (date + time or time only).

Cost per hour concerns the costs associated with the corresponding position, resource or
organization unit. It is described as a FLOAT or INTEGER constant. The cost per hour of a
performer is used to calculate the predefined attribute COST of a task (see chapter 15)
depending on who the performer is and how much this performer costs. Usually, the cost per
hour includes all the overhead costs associated with the ORG element.

Efficiency level of a performer is described as a constant of type FLOAT, expressed as a decimal
value between 0 and 1. Value 1 (or 100 %) is the default efficiency level of activities performed
by the corresponding employee, position, resource or organization unit. The durations assigned
to tasks should be that of a standard performer with an efficiency level 1. If the duration of a
task is “2h” and the efficiency level of a particular performer is 0.5 then the real duration of the
task will be 4 hours. If several alternative performers (OR expression) are associated with the
task, then one of the available performer will be chosen randomly, regardless of his efficiency.

Name of employee can be associated with a single position only. This attribute should be
described as a formal GRAPES-BM identifier because it can be used in the performer expression
of the task in addition to the position. The name of the employee can be used effectively if we
want to associate a task with one particular employee. For example, from all programmers of
COBOL just one person Mr. Smith should perform maintenance of a certain program, because
he is the author of this program.

More details on the ORG diagram can be found in the GRADE on-line HELP, and Language
Reference Manual.
Organization Structure Modeling 81

•
•
•
•
•

82

•
•
•
•
•

Chapter 12

13

Chapter 13
Data Modeling

Data Modeling in GRAPES-BM requires defining the separate datatypes and the database (data
store) structure.

13.1 Datatype definitions

The language GRAPES-BM has the following basic (elementary) datatypes:

integer

float

string

time

duration.

INTEGER datatypes can be manipulated with the following operations:

+, -, *, div, mod.

Similarly, FLOAT datatypes can be manipulated with the following operations:

+, -, *, /.

INTEGER and FLOAT constants are represented in a traditional form, e.g. 25, -25, -25.05, 25.05.

There are no operations defined for STRING datatypes. STRINGS have purely illustrative
meaning, so STRING can be used as the datatype for an event, but nothing more.
83

•
•
•
•
•

84

•
•
•
•
•

The TIME and DURATION datatypes can be manipulated with the following arithmetic
operations:

duration + duration -> duration;

duration - duration -> duration;

duration div duration -> integer;

duration / duration -> float;

duration * integer -> duration;

duration * float -> duration;

time + duration - > time;

time - duration -> time;

time - time -> duration.

TIME constants are displayed as follows:

The short form of TIME constants (representing date only) is also allowed, e.g. “1995.06.15”.

The DURATION constants can use the following time units:

d - for days;

h - hours;

m - minutes;

s - seconds.

DURATION constants are explained through the following examples:

“2h” - 2 hours;

“15m” - 15 minutes;

“2.5h” - 2 hours, 30 minutes;

“2h:30m”- 2 hours, 30 minutes;

“150m” - 150 minutes or 2 hours and 30 minutes;

“45d:12h:20m:30s” - 45 days, 12 hours, 20 minutes and 30 seconds.

Here we see that both DURATION and TIME constants should be included in double quotes:

“…”.

Expressions are built with the above mentioned operations in the traditional way.

The following random functions also can be used in expressions:

UNIFORM (min, max)

NORMAL (mean, deviation)

EXPONENTIAL (mean)

The arguments of these functions can be of type INTEGER, FLOAT or DURATION, e.g.
EXPONENTIAL(2), EXPONENTIAL(2.05), EXPONENTIAL(“2h:3m”).
Chapter 13

For TIME there are 2 more built-in functions:

NOW ;

START TIME,

however, their usage is slightly restricted; they are not allowed in the WHERE clause of triggering
conditions.

The logical expressions with INTEGER, FLOAT, TIME and DURATION datatypes can use the
following operations of comparison:

=, <>, >, <, >=, <=.

On each side of the comparison expression only AND and OR operators (or their alternative
forms & and |) are allowed.

The only legal user defined complex datatype in GRAPES-BM is the RECORD. RECORDS are
defined graphically (see Figure 13-1). Each of these definitions can be represented in one
hierarchy (see Figure 13-2).

The field names and datatype names can be also identical - Name (Figure 13-2) can be used
instead of Name type (Figure 13-1). Reuse of datatypes is recommended. Field names of one level
of record should be unique.

Figure 13-1: Datatype definition (DD) diagram Address

Address

STRING
City

STRING
Street

INTEGER
House No

Name type
Name

Name type

STRING
First Name

STRING
Surname
Data Modeling 85

•
•
•
•
•

86

•
•
•
•
•

Figure 13-2: Two-level datatype Address

Datatypes are defined in DD diagrams (see Figures 13-1 and 13-2). The definitions of RECORD
datatypes can be freely distributed among several DD diagrams. The name of the DD diagram can
be chosen arbitrarily, however, the readability of the model improves if the names of the main
datatypes are the same as the names of the DD diagrams. In the previous example the recommended
name of the DD diagram would be Address.

The DD diagram is placed on the top level of the model tree (see Figure 5-3).

13.2 Entity Relationship Diagrams

The ER Diagram is used to define the Entity Relationship model in graphical form. In a
business model, the ER diagram can be associated with a data store to specify the structure of
objects stored and the relationships among them (see Figure13-3).

Figure 13-3: ER Diagram Employees

The relationships between entity types in this example can be read as follows: “Employer employs
one or more Persons”, “Each Person is employed by just one Employer”, “Each Person has just one
Address”, “Address concerns zero or more Persons”, etc.

Address

STRING
City

STRING
Street

INTEGER
House No

Name type
Name

STRING
First Name

STRING
Surname

Employer

Address

Person
Type: Name type

has

concerns

employs

is employed by

concerns

has
Chapter 13

Each entity type can be associated with a record which should be described in the DD
DATATYPE diagram. If the name of the entity type is the same as the name of the RECORD
datatype then only the entity name is displayed in the ER diagram. Otherwise, the entity name
is followed by the corresponding datatype name, e.g. Person Type Name type.

The ER diagram is used mostly when doing relatively detailed modeling in the later stages of a
project. In this case the access and the access rights from tasks (and their performers) to data
stores can also be described. For this purpose Access Tables are used.

Access Tables are associated with individual tasks (see Figure 5-3). The access table depicts
which entities from which data stores may be accessed from this task. The name of the table is
always the same as the name of the owner task.

Figure 13-4: Access Table of Task A

The Access Table (see Figure 13-4) describes:

• name of data store;

• names of accessible entities;

• access rights:

- R - read only;

- A - add new instance to the entity type;

- U - update contents of the entity fields;

- D - delete instances of entity type;

- G - general access rights, including R, A, U and D.

The Entity Relationship model is briefly mentioned here. However, it is quite an important
component of GRAPES-BM (see the more detailed description in the User Guide, Language
GRAPES 4GL Description V.2.0). This diagramming technique enables both high level or
detailed data modeling of the existing system or the new system to be designed.

Remember, modeling techniques and tools of the previous generation concentrated mainly on
data modeling and data modeling support was only available for a designer. For relatively small
systems such an approach was and still is satisfactory.

In the case of large and complex systems, with a large number of heterogeneous elements and
functions, where there is access to several distributed data stores, immediately starting data
model design is difficult or even premature. Prior to data modeling, we have to describe and

Address Datastore R , A , U Read, add and update rights

Employer Datastore G General access rights

Person Datastore R Read rights

Database: Datastore

Entity name: Database: Access rights: Description:
Data Modeling 87

•
•
•
•
•

88

•
•
•
•
•

understand the organization of the system and its behavior. After modeling the logic of the
business processes, the identity and structure of the required data and access to the data elements
can be modeled more easily and in an informed manner.

From a Business Modeling point of view, data modeling can be carried out in two steps:

1 A high level (business level) data model can be created during one of the final stage of
modeling a business process. This data model would only include the names of entity
types, essential field names for each entity, and relationships between entity types.

2 A detailed and more precise data model will be created during detailed system and
software design, before coding and testing of the information system. This data model
(in addition to the above mentioned elements) would include a full definition of all
datatypes down to the level of formats, Primary and Foreign keys, indices of entities, etc.

In other words, during business modeling we usually only create the high level data model. This
data model together with business processes serves as a part of the requirement specification for
the design of a new information system.

The Variable Table or VT, is included in GRADE BM as of V.4.02, to support the use of global
variables during simulation. More information on the used of these global variables can be
found in Chapter 19 or in Chapter 14 of the Language Reference Manual.
Chapter 13

14

Chapter 14
Description of Events

Events are defined (as a rule) in the moment when they are mentioned for the first time in BP
or TD diagrams. As soon as a new event is drawn in a BP or TD it is automatically included in
the Event Table. This is supported by the GRADE tool, so that all events from the entire
business model are stored centrally.

Another sequence is also possible. One can define events first in the Event Table explicitly and
afterwards reference them in BP or TD diagrams.

There is only one Event Table for the entire business model and it appears to the right of the
BM diagram at the root of the business model (see Figure 5-3). Thus all events are defined
globally and all attributes of events are also global. However, some of the attributes can be
redefined for particular occurrences of events in BP diagrams.

So let us start the description of the global event attributes with the Event Table (ET) and then
continue to how specific instances can be partially redefined in BP diagrams.

14.1 Event Table

An example of an event table is depicted in Figure 14-1.
89

•
•
•
•
•

90

•
•
•
•
•

Figure 14-1: Event Table

The columns of the event table are arranged from left to right according to their importance.
The only informal column is the last, where free text comments can be added.

The most important attributes of an event (besides its name) are category and type.

Event Categories. The categories of events can be freely defined by the user during model
development. However, there are 5 predefined categories of events in GRAPES-BM:

Datatype column may be used in conjunction with any of the event categories, with the except
of Control Flow, which does not appear in the ET. The Datatype must actually be specified in
order to formally use this feature.

Datatype of messages. For events of category ‘message’, ‘material’ or any user defined category
the datatype can be:

Category Meaning

Control Flows Possible interpretation - ‘transfer of control’, ‘follows after’. This category of events is
unnamed and therefore these events are not visible in the event table;

Materials correspond to the fact of sending/ receiving (producing/ consuming) of physical objects
(packages of documents, diskettes, materials, etc.);

Messages correspond to the sending/ receiving of information (message) regardless of the physical
carrier of the message. The structure of this message can be described with a corresponding
datatype;

Timers Possible interpretation - a ‘certain time moment has occurred’. Time moments can be
described precisely or randomly with or without repetition;

Complex events correspond to a high level definition of complex (compound) events to be refined through
other categories of event at a later stage of the project (see more details on complex events
in the User Guide, Language Reference Manual).

Table 14-1: Event categories in GRADE

Application Message Appl Type "5h"

Car Material "30m" Fiat Uno

Container Material FLOAT

Earthquake Message STRING "5m" 3-5 points
according Richter

Every2min Timer REPETITION("2m")

EveryMorning Timer TIME("*.*.* 09.00")

From5to6pm Timer TIME("*.*.* 17.00") "1h"

Start Timer START TIME

Event name: Category: Data type: Persistence
interval:

Transfer time: Description:
Chapter 14

• elementary datatype integer, float, DURATION, TIME or string;

• user defined RECORD datatype (see details in chapter 13).

Datatype of complex events. For complex events the datatype section includes the names of
subordinated events.

Datatype of Timer events. For timer events the column ‘datatype’ is not used as a reference to
a definition elsewhere in the model. Instead, the ‘timer’ event is completely defined in the
corresponding row of the Event Table. Some of the possible Timer events definitions using the
keyword TIME are explained in the following examples.

Each asterisk (wild card character ANY) can also be replaced by an interval or list of constants:

The following identifiers of weekdays can be used:

mon, tue, wed, thu, fri, sat, sun.

Another keyword - REPETITON can be used to define regular or random time moments:

Timer definition Meaning

TIME(“1995.06.15 17:00”) June 15, 1995, 5 p.m.

TIME(“*.*.*”) daily (default time - midnight)

TIME(“*.*.* 09:00”) daily at 9 a.m.

TIME(“*.*.MON 09:00”) each Monday at 9 a.m.

TIME (START TIME) the event happens just once - at the start of system
activation or at the start of model simulation.

Table 14-2: Examples of timer definitions

Timer definition Meaning

TIME(“*.(01-03,06,12).(01,15)”) the 1st and 15th day of January, February, March, June and
December;

TIME(“*.(01,07).(MON-FRI) (09:00,17:00”) yearly in January and July, each weekday twice - at 9 a.m.
and 5 p.m.

Table 14-3: More examples of timer definitions

Timer definition Meaning

REPETITION(“2m”) every two minutes (regularly repeated event);

REPETITION(EXPONENTIAL(“2m”)) approximately every two minutes (randomly according an
exponential distribution with the average time interval
between events - 2 minutes);

REPETITION(UNIFORM(“1m”, “10m”)) randomly repeated events (with a random time interval
between 1 and 10 minutes);

Table 14-4: Timer definitions with REPETITION
Description of Events 91

•
•
•
•
•

92

•
•
•
•
•

Persistence interval describes how long an event will remain in the input queue of a task. In
other words - how long this event may exist in the system and allow the Simulator to use it for
triggering of tasks.

During the persistence interval the event may be ‘consumed’ by a task if the triggering condition
becomes true. When the persistence interval of an event expires, the event disappears
automatically and is no longer available for triggering.

Any valid DURATION type constant can be used for the persistence interval (see chapter 13). If
this column is empty, then the following default values of persistence interval will be assumed:

• 0 for ‘Timer’ events;

• everlasting - for events of ‘Message’, ‘Material’, ‘Control Flow’ and user-defined categories.

Transfer Time column may be used for ‘messages’ and ‘materials’ only. This column defines the
time interval between the moment an event leaves a previous task until it enters the input queue
of the next task. This can be interpreted as the transfer time between performers of these tasks
or as a delay between 2 tasks (if both are performed by the same performer).

The Default value of ‘Transfer time’ is 0, i.e., the event is immediately passed between connected
tasks. The transfer time mentioned in the Event Table can also be redefined for separate
occurrences of this event in a BP diagram. Thus different transfer times can be assigned to the
same event depending on the context (see next section).

Description of an event includes informal textual comments.

14.2 Event Attributes in BP

Figure 14-2: Events with locally redefined transfer time

Figure 14-3: Optional event

Task B Task A

Task C

e
"10m"

e
"2m"

Task A

Task B Task C

e [e]
Chapter 14

In BP diagrams we may have one or several occurrences of the same event. All of them will have
the attributes (inherited from the global event table). However, each occurrence of an event can
be associated with different tasks and different performers and therefore it is possible to change
the transfer time for each occurrence of an event (see Figure 14-2).

Figure 14-4: Deletion of event TID

Another additional construction with events in BPs is the indicator ‘optional’ represented by
square brackets enclosing the event name (see Figure 14-3). By default all output events of a task
occur always. The optional events can be used effectively in conjunction with triggering
conditions with optional components (see chapter 15).

Another possibility is to delete a transaction identifier (TID) from a particular occurrence of an
event using the keyword NOTID within the BP diagram (see Figure 14-4).

Task A

Task B

e
/NOTID
Description of Events 93

•
•
•
•
•

94

•
•
•
•
•

Chapter 14

15

Chapter 15
Task Details

Figure 15-1: Task Details Diagram

Branch 2
IS TRIGGERED BY(Ev2)
AND Ev2.Field A=Ev2.Field B

Branch 1
IS TRIGGERED BY(Ev1)
AND Ev1.Field A=0

Task D Task P Task D

Task B Task A

Task : Task C Type : TaskType Q
Triggering condition :
Ev1 OR Ev2
Performer :
Perf 1 & Res 1
Informal description :
Informal description of the task
(Free text)
Objectives :
Informal desription of Objectives
(Free text)
Constraints :
Informal description of constraints
(Free text)
Execution mode : Interactive
Duration : "2m"
Max instances : 5
Priority : 0
Attributes :
Material X: 10 USD;
Material Y: 20 USD;
Weight: 2.5 tons
Alternatives :
Task C2: PROBABILITY=30 %
Task C : PROBABILITY=70 %

Ev3

Ev4
SET Field A =
Ev1.Field A+1
REPEAT 25

Ev5
SET Field A = Ev2.Field A;
Field B = 100

Ev2 Ev1
95

•
•
•
•
•

96

•
•
•
•
•

By “Task Details”, we mean a detailed description of a task using the GRAPES-BM language.
The TD diagram serves this goal in GRAPES-BM. A simplified version of this diagram was
considered already in chapter 5. A general example of a TD diagram is represented in Figure 15-
1 “Task Details Diagram”.

Each Task may have several occurrences in one or several BP diagrams. Part of the task
description is also represented in each occurrence of a task in BP diagrams:

• Name of the task;

• Triggering conditions;

• Performers;

• Duration;

• Branching conditions (decisions);

• Input/ Output events and output expressions.

Figure 15-2: Occurrence of a task in a BP

The aforementioned attributes of tasks are synchronized between a TD and its occurrences in
BPs: that is, the attributes can be edited in the TD or in the BP and the changes will affect the
task globally. This means that in cases where the aforementioned attributes of tasks are sufficient
(these are the majority of cases), the user may ignore the existence of TD diagrams and enter all
relevant task attributes directly in the occurrence of the task in a BP diagram.

Task A

Task C
This is comment of task occurence
Ev1 OR Ev2
Perf 1 AND Res 1
"2m"

Task B

Branch 1
IS TRIGGERED BY(Ev1)
AND Ev1.Field A=0

Branch 2
IS TRIGGERED BY(Ev2) AND
Ev2.Field A=Ev2.Field B

Task P Task D

Ev1 Ev2

Ev5
SET Field A = Ev2.Field A;
Field B = 100;

Ev3 Ev4
SET Field A = Ev2.Field A+1;
REPEAT 25
Chapter 15

With respect to task occurrences, let us note another possibility: each task occurrence can have
a comment called description of the task, which is placed in the next row after the task name,
in a smaller font (see Figure 15-2 “Occurrence of a task in a BP”). The description is a feature
of occurrence and is not carried to TD.

Now more details about components of a task.

15.1 Task type and task attributes

In Figure 15-1 we see that next to the task name, the task type is specified. The task type may
have several task-specific attributes (Material X, Weight, etc.). Let us assume that the task name
is Produce Part A with A being the name of a part or component to be produced or assembled.
Let us also assume that the input event Ev1 is associated with datatype INTEGER which specifies
how many instances of Part A should be produced. Finally, let us assume that for the production
of Part A the materials X and Y will be consumed. In this situation the task would have the
following list of attributes:

Now, let us assume that the cost of Material X needed for one Part A is US$10 and the cost of
Material Y - is US$25. These conditions would be described in the TD as follows (see Figure 15-
3):

Attribute Meaning

Material X Costs costs of Material X for the production of one instance of Part A;

Material Y Costs costs of Material Y for the production of one instance of Part A;

Material X T Costs total costs of Material X for the production of all parts of type A;

Material Y T Costs total costs of Material Y for the production of all parts of type A;

Material Total Costs total costs of Material X and Y for the production of all parts of type A; in some
tasks of that type, the total cost is increased by 20% due to the location of the
performer of the task.

Table 15-1:
Task Details 97

•
•
•
•
•

98

•
•
•
•
•

Figure 15-3: Attributes of task Produce Part A

What is the role of task type here? In this example we have defined a task type - Part production
- and associated this type with a number of attributes. The Attribute (ATR) Table is used for the
definition of task type attributes. This table includes names of task attributes and their
description.

The name of the Attribute table is also the name of the task type. In the diagram tree, this table
is represented as a separate diagram

ATR TASKTYPE Type_Name

For the task type Part Production, the attribute table would have the name Part Production and
the following contents (see Figure 15-4):

Figure 15-4: Attribute Table of Task Type Part Production

The suggested usage of the Attribute Table is as follows. When we assign a task the type Part
Production, all TD diagrams of this task type will automatically inherit and prompt the user with
all of the attributes of this task type including their default values, units, and formulas.
Afterwards it is possible to redefine in the TDs of separate tasks the following:

• the default values of attributes (e.g. the value of Material Y costs is redefined in the TD to 25
USD from the default value of 15 USD included in Attribute Table; the value of Material X
costs still is 10 USD and therefore it is not necessary to repeat this statement in the TD);

Task : Produce Part A Type : Part Production
Attributes :
Material X Costs:10 USD;
Material Y Costs:25 USD;
Material X T Costs: Material X Costs * Ev1;
Material Y T Costs: Material Y Costs * Ev1;
Material Total Costs: (Material X T Costs +
Material Y T Costs) * 1.2

Ev1

Material Total Costs FLOAT USD Material X T Costs +
Material Y T Costs

Material X Costs FLOAT 10 USD

Material X T Costs FLOAT USD

Material Y Costs FLOAT 15 USD

Material Y T Costs FLOAT USD

Attribute name: Data type: Default: Unit: Formula: Description:
Chapter 15

• the formulas (e.g. the formula for the attribute Material Total Costs in the TD redefines the
value that would be calculated according to the formula in the ATR table).

The formulas may contain any element visible from the task, e.g.:

• other attributes of the same task;

• the predefined attribute DURATION of the task;

• fields of input events;

• the predefined attribute COST;

• some vertical operations.

COST is not visible explicitly, but its value is calculated according to the formula:

‘task duration’ * ‘performer’s cost’

with ‘performer’s cost’ being the ‘cost per hour’ of the performer of the task. This is defined in
the ORG diagram among the performer’s attributes.

The mentioned attributes, especially the predefined DURATION and COST, are relevant for the
simulation of a model and for gathering statistics of a simulation. They enable the calculation
of total cost, material consumption, duration, etc. of the whole business process. Such
information can be obtained by summing the corresponding attributes in several tasks.

15.2 Triggering conditions of a task

Triggering conditions were discussed briefly in chapter 2. This section will provide more
examples and some comments for constructions which are not self-explanatory.

In the following examples letters e, f, g and h are used as different input events of a task:

AND (the same as ‘&’)

means that all input events of the task are AND-ed;

OR (the same as ‘|’)

all input events are connected with exclusive OR;

e and f or e and g

is the same as (e AND f) OR (e AND g) and requires e plus one of the two - f or g; AND has a higher
priority relative to OR;

e AND (f OR g)

the same as the previous;

e AND f WHERE e.A = f.A
Task Details 99

•
•
•
•
•

100

•
•
•
•
•

here, and in the following examples, it is assumed that events e, f and g are associated with record
datatypes with fields A and B;

f AND g AND h WHERE f.A = 0 AND f.B = g.B

e OR (f WHERE f.A = 0) OR (g WHERE g.A = 1)

(e AND f WHERE e.A = f.A) OR (f AND g AND h WHERE f.A = 0 AND f.B = g.B)

in these examples the parenthesis for the WHERE group are required;

e and all f

this triggering condition is true if event e and at least one instance of event f is in the input
queue;

e and g and ALL f

each AND group may have only one ALL statement which concerns only one event; If the ALL
group is needed for several input events in one triggering condition (e.g. every morning listen
to all voice mail messages and to all incoming letters) then this situation should be converted to
two consecutive tasks with one ALL group in each task;

e AND ALL f WHERE f.A = e.A

e AND f AND ALL g WHERE e.A = f.A AND g.A = 0

(e and all f) or (g and all f)

the parenthesis for the ALL group are required if the ALL group is a part of a more complex
expression;

(e and all f where e.A = f.A) or (g and all f where g.A = f.A)

AND/ ALL and AND/ ALL/ WHERE groups may be connected with OR;

e AND <25> f

e AND g AND <10> f

rather than ALL, one can use a specific number of event instances included in ‘< >’ brackets,
however, this clause may not be followed by the WHERE condition. The specified number of
event instances is required to fulfill the triggering condition. If the input queue contains less
than the specified number of instances then the triggering condition is false;

(e and f) or (e and all f where f.A = 0) or (g and <25>h)

from this examples we see that AND groups may be connected with OR;

(e & f) | (e WHERE e.A = 0) | (e & ALL f WHERE f.A = 0) | (g & <25>h)

this example has 4 AND groups connected with OR (the second has a single e with the WHERE
condition) and all AND/ OR connectors are replaced with &/ |;

The following explanation concerns triggering conditions with OR. If several AND groups are
connected with OR, and several of them are true at the same time, then the Simulator will take
Chapter 15

the first from the left and consume the corresponding event instances only. For example, the
triggering condition

e OR f OR g

with one instance of e and one g in the input queue, will consume just one instance of e and
leave g in queue. This convention can be used in triggering condition such as:

e AND f OR e.

According to the convention, this triggering condition will consume e and f or just e if there are
no instances of f in the input queue. A similar situation could be described with the use of square
brackets ‘[]’, e.g.:

e [& f][& g]

This construction means that the triggering condition is true with e only (f and g type events
are not mandatory). However, they will be consumed if present at the moment of triggering.

Special conventions are assumed for unnamed control flow events:

• if the triggering condition is a simple OR then all control flow events are OR-ed;

• in all other cases, all the incoming control flow events are AND-ed with other input events.

In each triggering condition including AND, by default the transaction identifiers will be taken
into consideration. For example, the triggering condition

e & f

will be true only if there will be a pair of events e and f with the same TID. If there is an event
in the input queue without a TID, then it can be AND-ed with any other event (with or without
TID). Such events without TIDs can be obtained by explicit NOTID statement or in
conjunction with NOSTART specified in the transaction statement at the beginning of the task
chain. The TIDs are ignored in triggering conditions with ALL and <n> conditions, e.g. e & ALL
f, or e & <25> f.

More details on triggering conditions can be found in the GRADE/BM on-line Help and the
Language Reference Manual.

However, the existence of the triggering condition is not the sole condition necessary for task
activation. When the triggering condition is true, the task may start if at least one of the possible
performers of a task is available.

15.3 Performers of tasks

The possible performers of a task are described in a special performer expression. In Figure 15-
1 the performer expression is:

Perf 1 AND Res 1.
Task Details 101

•
•
•
•
•

102

•
•
•
•
•

In general, the performer expression is any logical expression with ‘elementary’ performers, AND
and OR (& and |) type of connectors, and parenthesis. ‘Elementary’ performers are performers
selected by name from the ORG diagram.

Example Comment

Institute

Department A

Department B

Car

<2>Car this means any two cars of the Institute;

Department A. Head

Department B. Head

Head any of the two above mentioned heads

Table 15-2: Examples of performer expression

Institute
Availability: *.*.(MON-FRI) (08:30-17:00)

Department A

Head
Competency: Pascal ,

Cplus
Employee name: JSmith

Programmer
Competency: Pascal ,

Cplus
Employee name: DHigman

Programmer
Competency: Pascal
Instances: 5

Computer
Instances: 7

Department B

Head
Competency: GRAPES,

Pascal
Employee name: JBrown

Programmer
Competency: Pascal
Instances: 6

Computer
Instances: 6

Car
Instances: 3
Chapter 15

On the basis of these elementary elements, logical performer expressions can be composed, e.g.:

Department A. Programmer OR Department B. Programmer

Department A. Programmer AND Department A. Computer OR Department B. Programmer AND
Department B. Computer;

<2> Department A. Programmer WITH COMPETENCE= Pascal, Cplusplus AND <3> Department B.
Programmer WITH COMPETENCE= GRAPES, Pascal;

As previously stated, for tasks to actually start, both the triggering condition and performer
expression must be simultaneously true. The performer expression will be checked only when
the triggering condition is true and the task commences when there are ‘elementary’ performers
available according to the conditions of the performers expression. When the task starts, the
selected performers become busy. They will not be available for another task until the current
task is completed. The duration of the task is specified in the duration section of the TD and
may be increased or decreased according to the efficiency level of the particular performer(s).

Department A. Programmer

Department A. Programmer. DHigman programmer D. Higman of Department A

<3> Department A. Programmer any three Programmers of Department A

<3> Programmer any three Programmers of Department A or B

<2> Department A. Computer any two Computers of Department A

<2> Department A. Programmer WITH COMPETENCE=
Pascal

<2> Department A. Programmer with competence=
Pascal for 50 %

any two Pascal programmers of Department A
that will be employed as performers for 50% of
their working time; the duration will not be
influenced by this clause

Department A.ANY any person from Department A

<2> Department A. any with competence=
Pascal, Cplusplus

any two persons of Department A with
competence in Pascal and C++

<5> any with competence= Pascal any 5 persons of the Institute with
programming skills in Pascal

Example Comment

Table 15-2: Examples of performer expression
Task Details 103

•
•
•
•
•

104

•
•
•
•
•

15.4 Task Duration

In simple cases, the task duration is described as a constant with the type DURATION, e.g.:

“2d”, “5h”, “90m”, “2d:5h”, “2h:30m”;

Task duration can also be a random function with the type DURATION, e.g.:

exponential(“2m”).

In general, the task duration can be described with an expression. Arguments of such an
expression can be:

• attributes of a task (elements of ATR table);

• fields of input events.

A correct example of a DURATION expression of task Produce Parts is:

“2m”* Ev1.Num

with “2m” being the time needed for the production of one part;
Ev1 - input event of the task associated with the record datatype;
Num - field of the record describing the number of parts to be produced.

Rather than using a duration constant, we can use a formula, e.g.:

C * Ev1.Num

with C being the named constant or attribute containing the value of time needed to produce
one part.

The value of C can be defined:

• in the SP (simulation parameters) table;

• in the ATR table.

In both cases the duration of the task will be calculated according to a formula in the duration
section of the task.

15.5 Priority

The priority of a task is assigned in the ‘Priority’ section of a task and can be described as an
INTEGER constant, e.g.:

priority: 2

The default value of priority is 0 (this corresponds to the highest priority).

The priority attribute is very helpful if the performers are rather busy. For example, if a Secretary
in Office is assigned as a performer of several tasks, e.g. register incoming letters and answer
phone calls, then the latter should be assigned a higher priority.
Chapter 15

The following resource management convention is built into the GRADE/BM Simulator: each
active task will be completed using the selected performers, and only after completion of the
current task, the next task will be chosen according to the highest priority. Thus, in the business
model we can imagine two types of queues:

• a queue of input events in the front of tasks;

• a queue of tasks (with triggering condition - true) waiting for available performers. The next
task from this queue will be assigned a performer in the moment when the previous task is
completed and its performers are released.

15.6 Max Instances

This attribute of a task must be of the type INTEGER, and is used to restrict the maximum
number of instances for one task occurrence in BP. This attribute makes sense in situations when
the exact number of performers is not known, not defined, or there is little understanding how
the tasks will compete for performers.

15.7 Alternatives

This section will be needed in situations when the same task is refined with several alternative
versions of task chains and each version is represented as a separate BP diagram. For example,
the task ‘rent a car’ will be performed according to different scenarios if the client is known than
if the client is unknown. In such situations, it is possible to develop one BP diagram which
includes all the necessary decisions needed to differentiate these two situations. However, one
joint diagram may be too complicated and difficult to read. Therefore, GRAPES-BM supports
the possibility to define different alternative refinements for one task.

Each alternative has a name and a probability assigned to it. The name of the alternative is the
same as the name of the corresponding BP diagram. The names of alternative BP diagrams are
visible also in the diagram tree directly beneath the task being refined. The probabilities of the
alternatives will be used when simulating the model.

15.8 Informal Sections

There are several sections provided for the informal description of a task. They all are optional.

Description includes free text about the task. This would be helpful if the task name is not
sufficient to fully describe the task.
Task Details 105

•
•
•
•
•

106

•
•
•
•
•

Objectives and Constraints also are described as free text. Any kind of comments, formulas, and
numbers can be used to emphasize the objectives and constraints of the task. In these sections
the non-functional requirements can be described, e.g. safety, security.

Execution Mode of the task may be described using one of the following keywords:

Keyword Meaning

manual if the task should be performed by a person manually

interactive if the performers are people and equipment together.

automated if the task is performed by a computer or other kind of
equipment

Table 15-3: Execution modes of task
Chapter 15

16

Chapter 16
Task Outputs

The inputs of the task and the task body have now been comprehensively described. This
chapter will describe the possible outputs (results) of a task. Depending on the result produced
by the task there may be tasks of two subtypes:

• Transformation tasks where a certain set of output events is produced always at the moment
of task completion;

• Decision tasks where several possible sets of outputs are produced according to the branching
condition described in special decision symbols.

16.1 Branching Conditions

The tasks represented in Figures 15-1 and 15-2 are decision tasks because they have at the
“output end” two decision symbols representing the branching conditions and two alternative
sets of output events.

In general, decision symbols must have a ‘Decision Name’ and an optional ‘Decision
Expression’:

The Decision expression may be represented as:

• a probability; or

• a formula.

The probability is described as a constant ‘Number %’ and is taken into consideration by the
Simulator.

In practice, several branching conditions can be TRUE simultaneously. If the branching is
described via probabilities then the following two situations are possible:

• the probability describes a separate decision branch exclusively; or

Decision Name
[Decision Expression]
107

•
•
•
•
•

108

•
•
•
•
•

• the probability describes one decision branch independently of other branches.

In the first case, the EXCLUSIVE keyword should be used. If the branching condition of one
branch is true, then it will be false for all other branches of this task. The sum of the probabilities
should not exceed 100%. This keyword actually represents an exclusive OR as follows:

In the other case (without EXCLUSIVE) the decision branches are connected with non-exclusive
OR and several branches (or none) may be activated simultaneously, independent of one
another, according to the probabilities specified:

In this figure above, both Part A and Part B can be bad, according to the fixed percentages,
independent of one another.

If the branching condition is described with a formula, then the keyword EXCLUSIVE is not
applicable. In that case the formulas will determine the true and false branches.

Formulas in Decision symbols may include the following:

Boolean expression | ELSE | ALWAYS

The Boolean expression may contain:

• attributes of a task;

• fields of input events;

• built-in Boolean function ‘is_triggered_by (Event Name)’ (for or triggering conditions only).
The value of this function is ‘true’ if the mentioned event has participated in the triggering
of this particular task instance.

Task : Checking

Correct
70 % EXCLUSIVE

Wrong
30 % EXCLUSIVE

Task : Testing

Part A is bad
80 %

Part B is bad
60 %
Chapter 16

The following example:

shows how this function is used together with conditions on values of event fields. The branch
E_case is ‘TRUE’ if the Task B was triggered by event e with a zero value of the field X associated
with event e. The branch F case is TRUE if the task was triggered by f with zero value in the field
Y associated with event f.

ALWAYS corresponds to a formula which is always ‘true’ or to a branch with probability of 1.

ELSE stands for all other cases. This branch will be ‘true’ if all other branches are ‘false’. Note
that the keyword ELSE can be used together with probabilities as well.

16.2 Values of Output Events

The association between the event type and its datatype is defined once in the Event Table.
However, each instance of an event may carry different values from one task to another. In this
section we shall describe how these values can be assigned.

The values can be assigned to output events using a special SET operator:

SET field1 = expr1; field2 = expr2; …

This expression is written after the output event name (see Figure 15-1). This makes sense only
if the particular output event is associated with a datatype. In the aforementioned example the
event Ev1, Ev2, Ev4 and Ev5 obviously are associated with a record datatype with field A. This
value of field A is assigned from Ev1 to Ev4 (alternative 1) and from Ev2 to Ev5 (alternative 2).
The values of Ev3 (if any) are not changed in this task.

E case
IS TRIGGERED BY (e)
& e.X = 0

F case
IS TRIGGERED BY (f)
& f.Y = 0

Other
ELSE

Task : Task B
Triggering condition :
e OR f

fe
Task Outputs 109

•
•
•
•
•

110

•
•
•
•
•

Let us discuss another example. Let e and f be events. Both events are associated with a record
datatype which has fields x and y:

In this example the fields of output event f will be assigned values e.x and e.x * e.y of the input
event e. For the output event e, the value of the x field will only be increased by 1, but the y field
will remain unchanged (the same as at the input event e).

If event e were associated with a multilevel (nested) record where field x has subordinated fields
a and b, then a name with qualifiers should be used, e.g.:

SET x.a = e.x.a+1

The assignment of values is allowed for each elementary field separately on the lowest level.

If an event has been associated with a basic datatype (e.g. INTEGER, having no fields), then the
keyword VALUE should be used:

set value = e+1

The expression in the SET statement may contain the following elements:

• task attributes;

• fields of input events.

If the task has a triggering condition with OR, then the input events used for triggering can be
controlled with the IS_TRIGGERED_BY function.

The output events can be associated also with a REPEAT expression:

REPEAT integer_expression;

Task : A

e
SET x = e.x+1

e

f
SET x = e.x;
y = e.x * e.y
Chapter 16

The REPEAT statement follows SET and replicates (with assigned values) the output event the
specified number of times:

In this example, Task C will produce 100 events of type f and y events of type e (with y being
one of the fields of the input event e).

There is a special convention for situations where no explicit SET statement is used. In this case,
the values of event fields are transferred through the task without changes. This is possible when
the input and output events have the same names or where input and output events have the
same data type.

Another situation with a group triggering (ALL or < > construction in triggering conditions) can
be considered as a default REPEAT statement:

In these cases, all input events f consumed by the task will be reproduced in the output and they
will have the same (if any) field values (unless an explicit SET statement is used to change the
values).

Task : C

e
SET x = e.x+1
REPEAT e.y

f
REPEAT 100

e

Task :B
Triggering condition :
e & <25> f

Task :A
Triggering condition :
e & ALL f

e ef f

f f
Task Outputs 111

•
•
•
•
•

112

•
•
•
•
•

For a group triggering there is the additional possibility to include in the SET statement, the
vertical operations SUM, MAX, MIN and AVG (average) with reference to the multiple input
event:

Task : D
Triggering condition :
e & ALL f

fe

g
SET VALUE= SUM (f.y) * e.x
Chapter 16

Part III
Appendices

17

Chapter 17
Example: Production Line

Let us look at an example from the manufacturing area - the production of circuit boards with
microchips.

17.1 Simplified view of tasks

In this example a Customer sends a purchase order (message Customer Order) for a certain
number of circuit boards (field No of Boards of datatype Customer Order). The Supervisor
organizes the production and sends this message to the Operator. The Operator takes boards
from the Boards store and forwards them to the Robot. One by one, The Robot takes 100 chips
(parts of type A) from the Parts A store and assembles them on the board. Afterwards the Board
is tested by the Test Unit. If a defect is discovered, then the Operator repairs the circuit board.

This model is represented in the diagram tree shown in Figure 17-1, Figure 17-2 (Performers
and their organization structure) and Figure 17-3 (the structure of ‘Message’ events).

Figure 17-1: Diagram tree Simplified Production, essential tasks

BUSINESS MODEL Simplified ProductionBMCMT VT ET CMP SP

Simplified ProductionORGCMT

DATATYPES MessagesDDCMT

TASK Simplified ProductionBPCMT TD AT PD

TASK Assemble BoardBPCMT TD AT PD

TASK Continue AssemblingBPCMT TD AT PD

TASK Deliver BoardBPCMT TD AT PD

TASK Order BoardsBPCMT TD AT PD

TASK Organize ProductionBPCMT TD AT PD

TASK Prepare BoardBPCMT TD AT PD

TASK Repair BoardBPCMT TD AT PD

TASK Test BoardBPCMT TD AT PD
115

•
•
•
•
•

116

•
•
•
•
•

Figure 17-2: ORG diagram, Simplified Production

Figure 17-3: DD diagram Messages

The Event table of the model is represented in Figure 17-4.

Figure 17-4: Events, Simplified Production

The business process Production and Testing is represented in Figure 17-5. This diagram is
relatively simple because each task in the model corresponds to a real task in the manufacturing
area. However, sometimes special technological tasks are needed to adequately describe the real
problem through the simple constructions of the GRAPES-BM language.

Production Line

Supervisor Operator
Instances: 2

Test Unit Robot

Customer Order

INTEGER
Total No required

No of Boards

STRING
Text

Board

INTEGER
The current No of Parts
on Board during production

Parts

STRING
Text

Board Message Board

Customer Order Message Customer Order

Order one Board Message

Event name: Category: Data type: Transfer time: Description:
Chapter 17

Figure 17-5: Simplified BP, Production and Testing

17.2 Probabilities of Defects

Let us continue the same example on a more detailed level. From previous experience, some
statistical summaries about possible faults and defects in the manufacturing process are
available. Let us assume that there is a 1% probability that a unit of Part A is faulty. During
assembly, there is a 2% probability that a part will be damaged. Unfortunately, the testing also
is not 100% correct. That is, there is a 10% probability that a bad board will be recognized as

Organize Production
Supervisor

Assemble Board
Add one part A

Robot

Boards
Store of Boards

Parts
Store of Parts A

Test Board
Test Unit

Repair Board
Operator

BadGood

Deliver Board

Order Boards

Continue
Board not Completed

Board.Parts < 100

Ready
Board Complete
ELSE

Prepare Board
Operator

Order one Board
REPEAT Customer Order.No of Boards

Board
SET Parts = 0

Board

Board

Customer Order

Board
SET Parts = Board.Parts + 1

Board
Example: Production Line 117

•
•
•
•
•

118

•
•
•
•
•

being good. Similarly, there is a 4% probability that a good board will be recognized as a bad
board and sent for repair. When a board is sent to be repaired, there is a 25% probability that it
will not be repaired properly.

A business model describing all these conditions is represented in Figure 17-6 and Figure 17-7.
Here we have modified the structure of messages and introduced a number of technological
tasks to make the model more understandable from its graphical representation in the BP. For
example, error ‘demon’ tasks are introduced to depict where the bad parts and bad boards come
from. These technological tasks, as a rule, have zero duration and no performer, so they do not
influence the statistics for transaction duration and performer dynamics. The branching
conditions are very important parts of these technological tasks. In Figure 17-7 one can find
four such technological tasks.

Figure 17-6: Messages in Production and Testing with defects

It is possible to describe the same process without technological tasks. However, in this solution,
much of the information is hidden in the SET expressions and task attribute sections (they are
not visible in the BP). The branching conditions also become more complex in this case.

Each particular solution is a trade-off between graphically represented information (this leads
to a larger number of technological tasks like in Figure 17-7) and formula based calculations
which are hidden from the reader of the diagram but are included in different user defined
attributes and are used by the Simulator. A more detailed discussion on several alternative
solutions to this problem can be found in the Simulation Tutorial.

Thus, the business process in Figure 17-7 adequately represents the production process. The
simulation of this model will yield valuable forecasts that would be difficult to obtain
analytically, e.g. how much time is required to produce 100 good Boards (recognized as good);
how many bad Boards are predicted among the Boards recognized as good within the shipment
to the Customer (i.e. how many extra Boards should be produced to replace the bad Boards
according to Customers claims); how many Parts A actually will be needed for the final result;
what is the cycle time required due to a limited availability of personnel, etc.

Customer Order

INTEGER
Total No required

No of Boards

Board

INTEGER
The current No of Parts
on Board during production

Parts

INTEGER,
Value set:{0,1}
0 - no defects
1 - at least 1 defect

Def
Chapter 17

Figure 17-7: Production with defects and testing

Organize Production
Supervisor
"10m"

Prepare Board
Operator
"5m"

Test Defective Board
Test Unit
"3m"

No
Board complete
ELSE

Defect During Assembling
No performer, technological task

Assembling OK
98 % EXCLUSIVE

Order Boards

Parts
Store of Parts A

Boards
Store of Boards

Test Normal Board
Test Unit
"10m"

Assemble Board
Ad one part A
Robot
"5s"

Defective Part Added
No performer, technological task

Yes
Board not complete
Board.Parts < 100

Defective Part
1 % EXCLUSIVE

Normal Part
99 % EXCLUSIVE

Continue Assembling
No performer, technological task

Normal Parts
Board.Def = 0

Recognized as Normal
Defect not discovered
10 % EXCLUSIVE

Board Repaired
75 % EXCLUSIVE

Board Not Repaired
25 % EXCLUSIVERepair Normal Board

Operator
"2m"

Repair Defective Board
Operator
"5m"Recognized as Defective

4 % EXCLUSIVE
Recognized as Normal

96 % EXCLUSIVE

Deliver Board

Continue Defective Part
No performer, technological task

Defective Part
Board.Def = 1

Defect During Assembling
2 % EXCLUSIVE

Recognized as Defective
Defect discovered
90 % EXCLUSIVE

BoardBoard

Customer Order

Board

Board
SET Def = 1

Board

Board

Board
SET Def = 0

Board

BoardBoard

Board
SET Def = 0

Board

Order one Board
REPEAT Customer Order.No of Boards

Board
SET Parts = 0 ; Def = 0

Board
SET Parts = Board.Parts + 1

Board

Board

Board
SET Def = 1
Example: Production Line 119

•
•
•
•
•

120

•
•
•
•
•

Chapter 17

18

Chapter 18
Solution Templates

During the development of a new modeling language, there are two approaches possible. First,
the language might be extended and appended endlessly with new statements and new
constructions to suit every possible situation. In this case, we can imagine the language as a
Christmas tree with numerous extraordinary ornaments and lights. Such a language would be
difficult to learn and use and it would only be appreciated by a group of sophisticated users. The
second alternative, would be to keep the language simple and robust with a limited number of
constructions. This would be nice for a beginner and sufficient for most of the simple tasks.
However, in more difficult situations the modeler will need special knowledge and special
solution templates to model real-life situations.

We believe that GRAPES-BM is closer to the second case, with a simple core to the language
with a number of self-explanatory symbols and keywords. These language elements are selected
to enable the creation of simple models for most real situations - production processes,
document flows in offices, end user requirements for Information Systems. However, if we need
to refine these models on a rather detailed level and enable more or less realistic simulation of
the process, then we would need additional knowledge of how to introduce technological tasks
and data processing to the model.

From outside (the graphical representation of BP and TD diagrams) such a model would remain
easily readable and understandable for everybody. In this case, the additional elements for
simulation and statistics gathering are hidden within technological tasks and user defined
attributes and formulas. At first, it seems that the technological tasks do not exist in the real
process. A challenge for the modeler is to appropriately name the technological tasks and create
readable expressions so that the refined model does not lose its readability or virtual simplicity
for the superficial viewer. Some quasi programming is done within the graphically represented
task chains and Boolean expressions connected with events. The main goal of this chapter is to
explain to the potential user of GRAPES-BM how to program the business model for situations
which cannot be described directly with the simple elements of the language core.

For each real process we can create two types of models on two different levels of detail. The first
level is meant for the graphical representation of the processes (see examples of office in Figure
3-2 and production line in Figure 17-5). This kind of model can be presented to a group of
persons involved to gain a common understanding on what the process currently is or what it
should look like in the new system. This model can also be used for static assessment of the
business process (see chapter 20). The second model would be developed on the basis of the first
121

•
•
•
•
•

122

•
•
•
•
•

one and would include a more detailed description of the dynamic aspects of the process (see
more detailed examples of Production line in Figure 17-7). These models contain technological
tasks (with no performers) to represent information on some situations that are relevant from a
simulation point of view.

The first recommendation: do introduce a number of technological tasks that do not exist in
the business area into your model when necessary to achieve your objectives. For example, the
error ‘demons’ in the Production line example (Figure 17-7) are introduced just to show where
the defects emerge and how the corresponding information can be gathered.

Further information processing requires calculations and data storing that become rather similar
to traditional programming languages. A question arises: how deeply should we go in the areas
of data manipulation, user interface description, etc. within the business modeling language?

At the same time we have to remember that the BM language is not a programming language.
The level of description should be detailed enough for the performer of a business task or an
information system programmer to understand, and at the same time the entire model should
remain readable and understandable for a manager and user of the system. Only the intent to
simulate of model forces the designer to include simulation specific details in the model.

The second recommendation: avoid extensive programming or program specification
(including data manipulation, data storing, calculations, etc.) in the BM language. Try to find
a reasonable level of detail for using the BM language (use it for specification of main tasks only)
and switch over to software specification languages for more detailed description of information
system requirements.

Let us consider some more sophisticated situations and their solutions in GRAPES-BM.

18.1 Modeling of Memory

Graphically, memory can be represented as a Data Store and/or a Data Object (see chapter 13).
However, this version does not support formal operations with these memory objects. The
modeling of memory can be represented through variables. GRAPES-BM model contains only
one Variable Table (VT), so all variables are global. Each variable in VT is described through it’s
name and data type. Variables can be used further in assignment section of tasks and GRAPES-
BM expressions. We’ll show here an example of using variable for memory modeling.

Let us consider the following example. Clients submit Orders. The Supervisor organizes
production according to Orders submitted by Clients. Order fulfillment contains 2 activities
with fixed expenses - 10 USD for Activity 1 and 15 USD for Activity 2. The Accountant sums
these expenses and the boss receives a report at the end of each day.
Chapter 18

Figure 18-1: Model of Memory

Figure 18-1 depicts this situation in a BP diagram. The definitions of events and variable are depicted
in the Event Table and Variable Table (Figure 18-2). The common memory in this example is
modeled as a variable (which is called Total in this example). Every morning at 9 a.m. the value of
the daily Total expenses is reset to 0. During activities 1 and 2 the costs, as messages Expense,
are forwarded to Accountant and accumulated (Total:=Total + Expense). It is easy to see that
the variable Total contains the current amount of expenses which are forwarded through Daily
Report to the Supervisor at the end of day at 5 p.m.

Set to Zero
Total:=0

Register Expenses
Accountant
Total:= Total+ Expense

Submit
order

Receive Order
AND
Supervisor

Activity 1
Performer 1

Activity 2
Performer 2

Deliver Parts
AND
Supervisor

Receive Parts
Client

Prepare
Expences

Report
Accountant

Receive
Expences

Report
Supervisor

Nine am to five pm

Expense
SET VALUE=10;

Expense
SET VALUE=15;

Five pm to six pm

Daily Report
SET Daily Total=Total;

Five pm

Nine am
Order

Part

Order

Part

Part
Solution Templates 123

•
•
•
•
•

124

•
•
•
•
•

Figure 18-2: Event Table and Variable Table for model with memory

In a similar way we can model more complex operations with memory. For example, consider
a situation where we need material resources for production and these resources are taken from
a stored supply that must be restocked regularly. In this case, the Accountant will be substituted
with Warehouse supervisor, Expense would be replaced with Material requirements, and Total will
depict the Total consumption. The rest of the model would remain quite similar, only the
expression ‘Total consumption :=…’ would have a minus instead of plus. The next step in such
an example would be to follow up the amount of materials in the warehouse and to order a new
shipment when a critical threshold is reached. This can be done with decision using this variable
in appropriate formula. Such a model could be easily modified to fit a business process of, for
example, a bank (incoming and outgoing payments) or an insurance company. The Simulator
can be used for predictions if the message flows are captured adequately.

18.2 Modeling of a Shared Queue

By default, a queue of incoming messages is formed at the input of each task. This queue is
separate for each task and each type of message. There might be situations where a shared queue
is needed for several tasks consuming the same type of event.

The problem is shown in Figure 18-3. Note that this figure is just a picture which should not
be considered as a BP.

Daily Report Message report

Expense Message FLOAT

Five pm Timer TIME("*.*.* (17:00)")

Five pm to six pm Timer TIME("*.*.* (17:00)")

Nine am Timer TIME("*.*.* (09:00)")

Nine am to five pm Timer TIME("*.*.* (09:00)")

Order Message

Part Message

Repe Timer

Total Message

Event name: Category: Data type: Transfer time: Description:

Total FLOAT

Category: Variable

Name: Data type: Value: Description:
Chapter 18

Figure 18-3: Shared Queue, Problem statement

Production Line is producing parts P which are consumed afterwards by Task A and Task B.
Parts should be available for both tasks. The Production Line does not know which task requires
the next part. The productivity of tasks A and B might change dynamically, therefore a shared
queue is the only reasonable solution. That situation, as a fragment of a BP, is depicted in
Figure 18-4.

The shared queue is modeled as a separate technological task Shared Queue. The branching is
performed according to the requests coming from Task A or Task B. The tasks Request for Task
A or Request for Task B are represented in Figure 18-4 as separate technological tasks.

Produce Parts
Production Line

Task A
Performer 1

Task B
Performer 2

Shared Queue

e f

P

PP

P2P2
Solution Templates 125

•
•
•
•
•

126

•
•
•
•
•

Figure 18-4: Shared Queue modeled as a technological task

18.3 Modeling of Interrupts

In GRAPES-BM, a task is ready for execution when the triggering conditions are true. At this
moment the available performers are selected. If there is a shortage of performers then the
performer will get the task with the highest priority of all tasks triggered. When the task starts,
it cannot be interrupted during execution (the principle of relative priorities is embedded here).
However, in real world processes, tasks are sometimes interrupted by another task (having
absolute priority).

Let us consider an example where Task X would be triggered by events e and f, but events g or
h are interrupt signals that should stop the execution of Task X immediately (see Figure 18-5).
The question is how to model such a situation in terms of tasks, events and triggering
conditions.

Produce Parts
Production Line

Request for Task BRequest for Task A

Task A
Performer 1

Task B
Performer 2

Case A
IS TRIGGERED BY (A)

Case B
IS TRIGGERED BY (B)

Shared Queue
(A & P) OR (B & P)

P fe

P P

A

fe

P2 P2

B

Chapter 18

Figure 18-5: Interrupt problem statement

Figure 18-6: BP fragment modeling the Interrupt of task X

In GRAPES-BM there is a possible solution for this problem. Task X, the task to be interrupted,
can be represented as a BP fragment (see Figure 18-6) including:

• event X (which represents the aforementioned Task X);

• technological task Start;

• technological task Terminate.

This BP fragment represents the behavior of Task X adequately.

Let us consider another example with an interruption (see Figure 18-7). Task Y is triggered by
event e and normally should be completed within 15 minutes. However, the arrival of event g
should interrupt the Task Y immediately.

Triggering
Condition:

AND

Interrupt
Condition:

OR

Task X
to be interrupted immediately by g or h

e f g h

D

Start
&

Terminate
(g & x) OR (h & x)

e f

x

h
g

D

Solution Templates 127

•
•
•
•
•

128

•
•
•
•
•

Figure 18-7: Interrupt with waiting, problem statement

Figure 18-8 depicts a possible GRAPES-BM solution for this problem. Here, Task Y is replaced by
task Execute Y and event y.

Figure 18-8: Interrupt with waiting, BP fragment

The decision symbols (see Figure 18-9) at the output of the Terminate task can be used to
determine whether or not the task has been completed. In a similar way, virtually any interrupt
situations can be modeled.

Start Terminate

Task Y
to be interrupted and terminated by g

"15m"

D

e g

Start Y
<Triggering condition>

Execute Y
"15m"

Terminate Y
(w & y) OR (g & y)

e

w

D

y

g

Chapter 18

Figure 18-9: Interrupt with two exits

18.4 Time Control

Let us consider another example. The Secretary forwards Queries to the Clerk for review and
expects the work to be done within 20 days. If the result is not received from the clerk within
20 days, then the Secretary sends a Memo to the Clerk. This situation is depicted in a BP
fragment in Figure 18-10.

In this example, a technological Delay task with a duration of 20 days is activated at the moment
the Secretary forwards the query to the clerk. After the Forward task, a signal C is sent to the
next real task of the Secretary - Follow Up. This task waits for either a Timeout signal or the
Result.

Start Y
<Triggering condition>

Execute Y
"15m"

Terminate Y
(w & y) OR (g & y)

Completed
IS TRIGGERED BY(w)

Interrupted
IS TRIGGERED BY(g)

e

w

y

g

D1 D2
Solution Templates 129

•
•
•
•
•

130

•
•
•
•
•

Figure 18-10: BP with Time Control by Secretary

One more remark for the purposes of correct simulation should be added here concerning the
end conditions of the transaction (see the task Send Answer with end keyword included). If the
Result from the Clerk is received before the Timeout signal, then this event would remain in the
input queue of Follow up forever. The 'end of transaction' statement at the end of the task chain
prevents us from having this problem, because this statement deletes from all queues all events
with the TID of the recently completed transaction.

18.5 Modeling of Counters

A number of situations require counting of events or objects. A simple task for counting could
be formulated as follows. The process starts with the task Order, where X times means also the
number of parts to be produced. This situation can be modeled easily using the REPEAT
statement which can be added to the output event of task (see Figure 18-11).

Forward
Secretary

Result received
IS TRIGGERED BY
(Result)

Send Query
Client

Delay
"20d"

Send Answer
Secretary
End

No Result
IS TRIGGERED BY
(Timeout)

Analyse Memo
Clerk

Follow Up
C & (Result OR Timeout)
Secretary

Review Query
Query
Clerk
UNIFORM("0.5d", "2d")

Query

Result

Timeout

Query

C

Memo
C

Chapter 18

Figure 18-11: Counter with REPEAT

This simplified example shows us how to manage without a counter just by replicating events.
The same example can be modified in order to introduce an explicit counter used by the
Supervisor (see Figure 18-12).

Figure 18-12: Counter with loop

The Organize Productions task will be repeated a specified number of times (X times) and each
time the corresponding decision will be chosen. The value of X times will be reduced in each
loop by one. In this example, it was assumed that the Order includes information on just one
type of part to be produced and that the number of parts in one order is fixed (100).

A more general case is depicted in the next version of the same example (see Figure 18-13).

Produce One Part

Order
Client

Organize Production
Supervisor

Order One Part
REPEAT X times

X times

Continue
X times > 0

Organize Production
Supervisor

Done
X times = 0

Order
Client

Produce One Part
Production Line

X times
SET VALUE = 100

Order One Part

X times
SET VALUE = X times -1
Solution Templates 131

•
•
•
•
•

132

•
•
•
•
•

Figure 18-13: Counter synchronized with ‘material’ events

Here the Client sends an order containing the name of the part to be produced (Part P) and the
required number X times. Several orders with different parts and different quantities can be
submitted simultaneously. In this case we do not want to mix up various parts and their count.
The default definition of the transaction and TIDs manage with this problem automatically. It
guarantees that different orders will be fulfilled correctly at the same time, i.e., that the
triggering condition of the task Organize Production distinguishes between different pairs of Part
P and the number of parts (X times) to be produced.

In this example the Order information (Part P) and the Number of parts (X times) could be joined
into one common message with the record datatype.

The next version of this example (see Figure 18-14) describes a situation where each Order (a
pair including Part P and the number of times X times) is completed before the processing of
the next Order can be started. For this purpose, an additional input Start next order is used. The
initial input of event Start next order is created by a technological Start Production task with
input from the time specification Start.

Order
Client

Produce One Part
Production Line

Continue
X times > 0

Done
X times = 0

Organize Production
for one instance only

&
Supervisor

Part P

Order One Part

Part P

X times

Part P

X times
SET VALUE = X times -1
Chapter 18

Figure 18-14: Counter synchronized with start time

Generally speaking, we can model the counter also as some variable. However, we should
consider in this case that all variables are global, so we should ensure that the same variable is
not used in various transactions simultaneously. In case of events the meaning of transaction
itself will help us (as in Figure 18-14).

18.6 When BM should not be used

GRAPES-BM, like any language, is designed to describe a certain types of systems. For these
types of systems, the language is friendly and its use advantageous. For different types of systems,
the language may not be sufficient. Let us look at two premises for successful usage of GRAPES-
BM.

Firstly, the system should work according to a ‘certain scenario’. For example, a well organized
production line performs a certain sequence of tasks (see Figure 17-5). Decisions and branching
are possible, and the branching conditions can be described easily, because:

• the number of outputs is relatively small;

Done
X times = 0

Continue
X times > 0

Receive Order
Part P AND X times AND Start next Order
Supervisor

Start Production
Nostart

Order
Client

Organize Production
for one instance only

Part P AND X times
Supervisor

Produce One Part
Production Line

Part P Order One Part Part P

X timesPart P

X timesPart P

Start next Order /NOTID
X times
SET VALUE = X times -1

Start

Start next Order
Solution Templates 133

•
•
•
•
•

134

•
•
•
•
•

• the branching conditions are clear; and

• there are more tasks than decision symbols.

Let us take another example - an airline ticket reservation system including the client, the agent
and the components of the information system. There are two dialogues: (1) between the client
and the agent; and (2) between the agent and the information system. The first dialogue is
difficult to predict because the client might inquire anything, like ‘is there an ABC flight next
year to Dallas’ or ‘what is the discount for children in Lufthansa flights in summer’. It would be
almost impossible to describe such dialogues in detail, however, they are part of the business
process because they keep the agent busy and sometimes result in purchase orders or ticket
reservation.

Secondly, look at the ‘level of detail’ of the process to be described. If we describe the dialogue
between client and agent as one task with 2 decisions: ‘reservation requested’ or ‘not requested’,
then on this level the business process will be understandable and useful and will lead us to
further activities, like ‘discuss preferable dates and carriers’, ‘check (via information system)
available seats’, etc. Thus, the process can be described conveniently on one level of detail where
we see the expected result of each activity (‘ticket reservation’ made or not made by the client or
‘price of available seats in certain flight’ provided by the information system). On a more
detailed level, the description in the BM language might turn out to be a complete mess of
decisions, loops, and data manipulation statements (do not even try to describe in GRAPES-
BM the filling of a screen form and field validation during information retrieval from an
information system! Other GRAPES dialects, GRAPES 86 and GRAPES/4GL are meant for
this).

Thus, in conclusion mostly GRAPES-BM should not be used to describe complex dialogues
that can be carried out in a large number of different ways and that would initiate parallel
processes that can communicate among themselves. This is a typical situation in information
system specification and should be described with appropriate specification languages.
Chapter 18

19

Chapter 19
Overview of GRADE/BM

The structure of GRADE/BM is represented in a GRAPES 86 Communication Diagram in
Figure 19-1 (in GRADE 4.0 the former Communication Diagrams are called Communicating
Objects (CO) Diagrams). The rectangles represent the main parts of the system, including users
of 2 types and the components of GRADE. Any of them can be viewed as a performer in a
business model. Databases, such as those in GRAPES-BM are represented as parallelograms.
The names of communication paths are supposed to have an association with the messages
transferred between objects.

This diagram concentrates on components and links. It does not reflect all possible scenarios for
the tool’s usage. The possible sequences of activities during business model development
supported by the tool components can hardly be formalized. It would be almost impossible to
create a BP diagram describing the modeling process precisely. However, one can ‘read’ the
diagram from top left corner to bottom right and get an idea about the rough sequence of
activities.

Business model development begins with User 1 in modeling mode (see top left object). At this
stage, the user interacts with Model Management (to create and/or open a model) and Graphical
Editors (to define/ open and develop BM diagrams). The diagrams are stored in the Repository.
This group of activities is a very versatile multifaceted dialogue. The user uses the keyboard and
mouse to open, edit, save and close ORG, BP, TD, ET and other diagrams in different possible
sequences. The most reasonable sequence here depends on the life cycle stage of the project, the
goal of this stage (see chapter 20) and the preferences of the user.

The diagrams created would be more or less correct syntactically, provided that the user has
taken advantage of various object re-usability schemes supported by GRADE such as ‘Pick
Name’ etc. Further, the model should be analyzed for the correctness of syntax and static
semantics. The Analyzer is represented just below the editors to emphasize that it can be used
only after something is created by editors. Here there is the possibly of a loop. After receiving
error messages from the analyzer, the user opens and modifies diagrams via editors and analyses
them again. The erroneous diagrams are marked in the Diagram tree with a red status circle next
to the diagram. Within the diagrams, the erroneous symbols are marked with green graphical
signs in the symbols. When the erroneous symbol is selected as the current symbol, then short
error messages are displayed in the status line.
135

•
•
•
•
•

136

•
•
•
•
•

These are the main activities to be performed by a user in the modeling mode. The other tools
would be used primarily by User 2 interested in the simulation of the model. Some GRADE
components are not visible to the user directly. They are accessible only via the Model
Management window. The next couple of steps deal with simulation and they can be formalized
easily.

Figure 19-1: Components of GRADE

When the entire business model is correct, the Simulator can be activated. This is initiated from
the model management window. Before the first simulation session starts, a special compilation
procedure will be carried out and intermediate S-code will be stored.

Starting from this point we have several applications open. Before simulation, the user might
open the animation desktop. This program visualizes the business process during simulation. In
the Animator, the activated tasks and links between tasks are flashed red and queues of messages

Simulator

Animator

Repository
diagrams, tree,
intermediate codes,
sumalution results

Model Mgt

Diagram
Tree

User 1

(BM for
modeling)

Graphical Editors
ORG, BP, TD, ET

Trace Browser

Filtered textual
trace

User 2

Simulation

Repository Mgt

S code linker

Analyzer
Syntax and
statical semantics

Excel

Simulation
trace and statistical
summaries

Start simulation

Simulation status

initiates

Show Tree opens

Errors

Diagrams

Tree Info retrieved

S code

Animation

Anim commands

Edit Tree

Editor Screens

speed control

save retrieve model

ready

saves

Save

Start

result summaries

Results

Numerical data postprocessing imports

Tree Info saved

inspect info

Control
Commands

Edit Diagrams

Diagrams Saved

Analyze

select data results saved
reads

Diagrams retrieved

S code created
Chapter 19

are depicted as green dots with a number of instances waiting. The information for the Animator
comes from the Simulator. The trace of the simulation process and various statistical summaries
can be recorded in the Trace database. An alternative is to record a filtered trace (the most
interesting events in it, together with data) in a textual file. The full contents of the trace or
different views and statistical summaries can be retrieved and displayed to the user by the Trace
Browser. The most significant results of the simulation session can be stored in the repository
and/or exported for further analysis by external tools (spreadsheets or statistical analysis
packages). Alternatively, the textual trace may be imported directly into Excel spreadsheet and
various statistical post-processing may be performed.

Here, another loop can start. After analysis of the simulation results, the user might do one or
both of the following:

• repeat another simulation session with different settings;

• modify the model via editors, re-analyze it and repeat simulation.

The results of different simulation sessions would be used to compare the influence of model
attributes (task duration, assigned performers, transfer times, decision conditions, sequence of
tasks, etc.) to the estimated system characteristics (performance, costs, usage/ idle times, total
duration of transaction, waiting time, number of instances served, etc.).

The main tasks in a modeling and simulation effort can be represented as a BP (see Figure 19-
2). We have left out the hundreds of less probable transitions from one task to another or from
one tool component to another.

This BP diagram represents business modeling and simulation activities on a rather high level.
It does not reflect the life cycle stages of model development, but instead represent the most
probable sequence of BM modeling in GRADE. The tool provides the user much more
flexibility than shown in Figure 19-2. The only real restriction to the user is that only analyzed
and correct models can be simulated. However, advanced users will find many possibilities to
simulate incomplete fragments of diagrams and models before the entire model is complete.
Overview of GRADE/BM 137

•
•
•
•
•

138

•
•
•
•
•

Figure 19-2: Business Model development, main tasks

Simulation_Needed

Analyze
the model
Analyzer

Setup_Animator
User_2 & Animator

Animation_needed Animation_not_needed

Results_exhaustive

Errors_found

Repeat_simulationModify_model

Simulation_Not_Needed

Correct

Edit_Diagrams
arrange tree,
fill in attributes
OR
(User_1 | User_2) &
Graphical_Editors

Setup_Simulation
trace and statistics options
OR
User_2 & Simulator

Simulate
with or without animation
OR
Simulator

Browse_Results
User_2 & Trace_Browser
OR User_2 & Excel

Export_Use_Results

Create_Diagrams
first version
(User_1 | User_2) &
Graphical_Editors

Define_Model
(User_1 | User_2) &
Model_Mgt

Print_Use_Model
Chapter 19

20

Chapter 20
Outline of Methodology

The previous chapter gave a general modeling with GRADE description of business process. It
does not describe the life cycle stage where business modeling is required. General sequence of
system life cycle phases, prior to the actual programming, is presented in Figure 20-1.

Figure 20-1: System life cycle phases supported by GRADE 4.0

All these phases are supported by the tool GRADE 4.0. As you see from the figure, the business
modeling is situated between two other phases - System Static Structure Modeling (Object
modeling via Class diagram) and System Model Development. The last phase is relevant only
in cases where IS design or re-design and building is involved. A typical GRADE 4.0 application
could also be a pure Business Process Re-engineering, performed by many consulting companies
in the world. In this case the whole life cycle ends with the business modeling (involving
simulation, as a rule). The next result then are the recommendations for the enterprise
restructuring, business process streamlining etc. The most software-like result in such a case
could be a re-design of work flows in the enterprise, easily describable by BP diagrams in
GRAPES-BM.

Now let us return to the first phase - System static structure modeling. The result of this phase
is the system object model - a set of class diagrams according to OMT/UML. Such a model
yields the first impression on a system - either “as-is” or “to-be”.

How to use the objects in the business modeling phase and further phases? As for the business
modeling, the object model to a great deal serves a draft for a detailed organizational structure
modeling (via ORG diagrams) and data modeling (via DD and ER diagrams). However, if the

System Static Structure
Modeling

(Object modeling via class
diagrams)

Business Model
Development

System Model
Development
139

•
•
•
•
•

140

•
•
•
•
•

object model is detailed enough, it may be sufficient for business modeling needs, no proper
organizational structure modeling via ORG diagrams and data modeling via DD and ER
diagrams is necessary (certainly, in cases we are not interested in simulation).

A sufficiently detailed object model of a system will contain also descriptions of transfer objects
- the messages circulating in the system, e.g.

Such a description is sufficient for understanding of the message Order, there is no need for pure
business modeling to introduce a special datatype Order in a DD diagram. To an even greater
degree this refers to ER models, sufficiently precise “prototypes” of which should already be
present in the object model. Certainly, all the above mentioned does not eliminate need for DD
and ER diagrams - they remain necessary for a detailed design, especially in the System design
phase. If such an “incomplete” business model (i.e. a model where ORG and DD diagrams are
substituted by Class diagrams) is to be prepared for simulation, “draft version” of ORG and DD
diagrams may be generated automatically from class diagrams by GRADE.

Now let us transfer to the Business model development which is the main subject of this book.

20.1 Recommended Sequence of Business Model
Development

Now more in details life cycle stages where business modeling is required. BM can be used to
analyze existing processes and also to develop new processes. In each of these cases, the principles
of model development and simulation will be slightly different.

The BP diagram in Figure 20-2 represents an outline of the BM methodology and underlines
the previously mentioned 2 cases:

• description and analysis of the business processes of an existing system (in a diagram the
corresponding tasks are included in a frame entitled Describe for the Existing System);

• development of new business processes (included in the frame entitled Modify for the new
system);

Order

Head Item
Chapter 20

Each part of this diagram (Describe the existing system and Modify the new system) repeats
essentially the same main steps. The diagram in Figure 20-2 depicts a generalized approach to
business modeling with GRADE, but the Diagram in Figure 20-2 emphasizes differences
between a business model for the existing system and for a new system.
Outline of Methodology 141

•
•
•
•
•

142

•
•
•
•
•

Figure 20-2: Outline of Business Modeling

Describe ... for the Existing System

Modify ... for the New System

Build System Model
Organisation structure,

Communication and Process
diagrams for the performers

Business Processes
Perform static analysis,

modify existing BPs

Change attributes
Change attributes
and/or performers
of the current BM

Change structure
Change structure

of the current
business processes

Satisfactory
Comply

with requirements

Improve
existing system

Develop new
system from scratch

Organization Structure
ORG diagram

Analyze Correctness

Analyze Correctness

Simulate BM
Simulate BM or evaluate

statically, find bottle necks
and other shortcomings

Business Processes
BP diagrams

Business Processes
BP diagrams

created from scratch

Performers
Modify existing assignments

or define new performers

Attributes
Specify attributes

of tasks and events

Attributes
Specify attributes

of tasks and events

Simulate new BM
Simulate new BM

and estimate results
or evaluate statically
Chapter 20

The entire diagram has two possible starting points. One of them starts with the external task
Improve existing system. In this case, the process starts with the analysis of the existing system
which would be analyzed and gradually improved according to the discovered bottle necks. The
other starting task is called Develop new system from scratch. In this case, the first cut task chains
would be redesigned and gradually improved afterwards.

The first internal task Organization Structure can be read together with the comment fields as
follows: Describe the Organization Structure as an ORG diagram for the Existing System. This
should be done according to the principles described in Chapters 4 and 12. The result will be
the organization chart of the existing system.

The next task - Describe existing Business Processes (task chains) as BP diagrams’ - actually is the
most essential, and refers to chapters 5 and 6. Given the capabilities of the GRADE tool, this
task can be done in 2 different styles. The first of them (see Figure 20-3 a) starts with drawing
the BP diagram. The tool will provide automatic synchronous generation of tasks in TD
diagrams, and event definitions in the Event Table. In this case the diagram might need repeated
editing and modifications to the task and event names. However, the tool will try to capture
each intermediate version of the BP diagram and supplement synchronously the ET and TD
diagrams. Thus, these diagrams will sometimes contain incorrectly spelled or extraneous
elements that should be removed with the function Delete unused events.

Another alternative for BP development is based on the GRADE function Generate BP from
TD. This approach is represented in Figure 20-3 b. A major advantage of this approach is the
automatic generation of possible connections between tasks. The algorithm starts with one of
the tasks processing the input of the entire BP. This task can be connected according to depth-
first searching for other tasks consuming the output of the first task and so forth. The
connection criterion of two tasks are the identical names of the corresponding events (output
event of one task and input event of the other task). Thus, the success of the generation
algorithm depends considerably on event naming. Events with identical names are considered
model-wide as identical events. Therefore, special attention should be paid to correct (without
unwanted synonyms and homonyms) naming of events and appropriate re-use.

The automated connection procedure performs all connections between tasks which can be
found based on the correspondence between input/output event names. Some missing
connections, especially at the top level of a model, may require manual editing. The BP can be
considered complete when all expected outputs of the BP are connected to inputs within at least
a weakly connected graph. For restructuring of the existing processes, often several alternative
versions are possible. In this case, the final version of the BP can be adjusted manually according
to the following criteria:

• minimum number of tasks used within the BP;

• minimum number of connections between tasks (lean structures);

• maximal structure reliability (with a maximum number of parallel connections), etc.
Outline of Methodology 143

•
•
•
•
•

144

•
•
•
•
•

Figure 20-3: Development of BP:
a) BP first with synchronization of events and TD;
b) generation of BP from TD

In the case of several possible process structures, a manual selection of the most preferable
variant is possible.

Within this step the essential data objects and data stores should also be defined.

The 3rd task Describe Attributes of tasks and events for the existing system includes:

• description of numeric attributes of tasks (duration, priority, maximum instances, user
defined attributes);

• description of timers and input generators;

• description of data objects and datatypes of messages (via DD diagram), data stores (via ER
diagram) and access rights (via Access Tables of tasks);

• structuring and hierarchy arrangement of the diagram tree.

The next task is Analysis of the correctness and completeness of the model because only correct
models (submodels) can be simulated.

The Simulation of the existing business model can be accompanied by animation. It results in a
number of statistical summaries and/or a full simulation trace. The trace can be used to debug
and validate the model as well as to explore the current and/or the possible behavior of the
system.

The statistical summaries of simulation results indicate total, maximum, average and minimum
values of attributes concerning task activation, seizure/utilization of performers and message
transferral, such as times spent in queue, queue length, frequency of events, dynamics of
performers (idle and usage time), task costs, and virtually any other user defined attribute, if
specified.

Complete BP
manually

Delete Unused
events, decisions, performers

Draw BP Dia gram
with tasks and events

Current BP to TD
(automatic synchronisation)

Generate BP
(draft version)

A)

A)

B)

B)

Define tasks
with their I/O events
Chapter 20

The evaluation of simulation results is a heuristic iterative procedure. It has two possible goals:
validation of the model (first) and analysis of the system (afterwards). Here, attention should be
paid to the ‘bottle necks’ and ‘weak points’ of the current system. They can be detected easily
from the statistical summaries displaying the longest queues, idle times of performers,
overloaded performers, or long transfer times between performers within one task chain.

As an alternative to simulation, static expert evaluation of the business model can be performed.
This would be the only possibility when the numeric attributes of tasks and events are not
available or cannot be obtained due to a shortage of project time or manpower.

The next group of tasks is included in the frame entitled Modify for the new system. The main
idea of this group is to improve the current version of the business model. Typical activities
during business model modification are:

• changing the sequence of tasks (concurrent versus sequential);

• changing the duration of tasks (or number of available performers);

• changing selection criterion and/or availability (working hours) of performer(s);

• reducing the transfer time of messages (which might show what reducing the distances
between performers, a work-flow system or simply improved communications might
accomplish), etc.

After changes to the model have been made, another simulation experiment should be
performed. Comparisons of the results of the old and new simulations can now be done. For
the purposes of more convenient comparison, the results of each simulation session can be
exported in ASCII or spreadsheet format to enable formal comparison procedures and the
storing of intermediate results.

In the next task - Modify Business Processes for the New system - manual modification of the
business processes should be done. This modification (improvement) should be based on the
results of static analysis of the current business process as well as on the simulation results. The
principles of static analysis are explained and illustrated with an example in a separate section at
the end of this chapter.

Another alternative for this task (create Business Processes from scratch) is provided for situations
where the business process is created from scratch, since it either does not exist or should not be
used as a basis for further work. This often equates to a revolutionary approach (versus
evolutionary - in the previous case) to business process development. According to the
evolutionary approach, the task chain should be created from the start (input) to the result
(output) of the process. According to the revolutionary approach, the goal is to create the
shortest path providing the expected result, therefore it is recommended that the task chain be
built backwards from the expected result (output) to possible inputs providing this result.

The next task Performers associates the tasks of the BP with the existing or possible new
performers of the tasks. This means simply the definition of a certain number of performers
with a certain qualification and productivity. It does not include the hierarchical arrangement
of the ORG diagram unless this is an issue in performer selection.
Outline of Methodology 145

•
•
•
•
•

146

•
•
•
•
•

Afterwards the Attributes of tasks and events are assigned, and the model is analyzed for
correctness.

The Simulation of new BM would be performed in several iterations until satisfactory or what
are believed to be representative results are obtained. In each iteration, some changes to the
attributes of a task, events, and/or performers can be made or the structure of BP can be
modified. In both cases, the principles of static analysis should be taken into consideration.

The last task in this outline Build System Model includes the creation of a hierarchical ORG
diagram. Here we would like to mention a number of GRADE features that might help to
obtain good ORG diagrams. The tool supports a function ‘Build system model’ from the
business model. The CO diagrams obtained depict all performers and links among them. From
these diagrams it is easy to observe:

• unused performers (some of the existing performers may remain under-loaded or completely
unused due to re-engineering of business processes);

• intensively interacting performers (these should be placed together in the same or in closely
located or well connected organization units).

These two ultimate situations can be used to arrange hierarchical structure of the new
organization. This also helps to allocate the hardware of the information system and other
shared resources. The typical changes in an ORG diagram at this step would be:

• eliminate unused or mostly idle performers;

• merge similar positions in different organization units if they have high idle times;

• increase or reduce the number of employees with certain competence;

• move performers or organization units to another location (another subsidiary) or choose
another communications mode for messages/materials to reduce transfer times, etc.

These changes should merely restore a perfect correspondence between the task chains and the
performer usage within these chains. For example, reduced message transfer time should be
reflected here as a different allocation of performers; reduced task duration usually means an
increased number of available performers or the assignment of performers with higher
productivity rates and more competencies; etc.

Valuable information at this or any stage of the project can also be obtained from the Data
Dictionary of the tool. For the entire model, the Data Dictionary shows: the definitions and
locations of all elements, e.g. one can find easily all occurrences of a task or all diagrams that
include a certain event, etc.

Details on system modeling with CO and PD diagrams can be found in several sources,
including the GRADE on-line User Guide.
Chapter 20

20.2 Static Analysis of Business Processes

The principles of static analysis of a business model are heuristic. They are quite understandable
from a common sense point of view. This chapter includes a summary of principles found in
several sources, e.g. [Keller95], [Bhatt96]:

1 Try to create sections with parallel task execution instead of sequential whenever
possible; This will shorten the duration of the entire process. Reductions in cycle times
of 50% would be a quite realistic goal in practical projects;

2 Avoid organizational breaks between tasks as much as possible, i.e., two sequential tasks
should be performed by the same active object if a specific qualification or specialization
is not needed to perform one of these two tasks; For this purpose:

- try to minimize the number of different performers within one task chain;

- try to minimize the number of transitions from one performer to another performer
during the task chain;

3 It is necessary to ensure that the information media between tasks is homogeneous:

- shifts between information media have to be avoided;

- multiple capture or entry of information has to be eliminated;

4 Information system support has to be reasonably ensured for each task;

5 It is necessary to exclude redundant performance of the functions.

Prudently applying these principles during the static analysis stage helps to find “weak points”
and “bottlenecks”.

Let us consider an example of a Business Process represented as a BP diagram Planning And
Organization (see Figure 20-4.). This diagram is part of a Maintenance Employee Training
Record System and describes how a Manager, Training Delivery department and Information
system called MTR System (these are three performers of tasks) create, plan, and organize the
training of employees in the enterprise.

Only two performers (Manager and Training Delivery department) are involved in the execution
of the internal subtasks. Given that scheduling of the training requires specific knowledge and
experience, we can conclude that requirement (2) is met in this case.

However, the media of the information exchange between tasks changes from task to task:

• telecommunication facilities are used by the manager to communicate with the MTR System;
Outline of Methodology 147

•
•
•
•
•

148

•
•
•
•
•

Figure 20-4: BP of the Planning And Organization task

• lists of the employees to be trained as well as the training schedules are sent via internal post
or using e-mail;

• ScheduledTrainingMessages could be read by employees on the bulletin board or received via
e-mail.

Moreover, the Manager must manually enter the names of employees as well as course codes or
titles into a word processor unless this information is stored in a data base and included in the
LicenseExpiryReport and CourseCatalogue. Once more, input of the same information is needed
during preparation of the messages for employees, even in a situation where the Manager uses
copy/paste to transfer data from an e-mail note to the ScheduledTrainingMessage.

Thus, we can conclude that the business process represented by BP on Figure 20-4 is not
efficient enough from the viewpoint of requirements (3) through (5).

BroadCasting
Manager

MakeRequest
Manager

DetermineLicenseExpiryDate
MTRSystem

PrepareCourseCatal ogue
MTRSystem

MakeTrainingSchedule
TrainingDelivery

ReceiveMessage
Employee

DetermineEmployees
Determine employees

to be trained
OR
Manager

CourseCatal ogueNeeded
15 % EXCLUSIVE

TrainingProcess
TrainingDelivery

ExamineReport
Manager

NotNeeded
85 % EXCLUSIVE

Decision

LicenseExpiryReport

RequestCatalogue

EmployeeList

CourseCatalogue

TrainingSchedule

ScheduledTrainingMessage StudentsGroup
Chapter 20

The modified version of this business process diagram is presented on Figure 20-5, and the main
differences between the previous version and the current one are the following:

• using the editing facilities of the screen form (not the print-out) LicenseExpiryReport, the
Manager adds (during execution of the task DetermineEmployees to be trained) the code of
the necessary training course to each row of the table and obtains an EmployeeList in
electronic form;

• the number of the functions performed by the MTR System is increased by defining the
following additional ones:

- The Support Scheduling function that must be performed once a week and that results in
the preparation of a CourseEmployeeMatrix to facilitate the scheduling of the training;

- The Messaging Facility function which is intended to control all the attempts to log-in into
the MTR System and to send all the prepared messages (if any) to the system users
including ScheduledTrainingMessages to employees scheduled for training and Training
Schedule Subset to managers (concerning only employees of the corresponding
organizational unit).

From the evaluation of the BP on Figure 20-5, we can conclude that:

• the information media is fully homogenous (telecommunications), i.e., requirement (3a) is
met;

• multiple entry of information is eliminated - this means that requirement (3b) also is
satisfied;

• the modified version is better than the previous one from the requirement (4) point of view
because the Make Training Schedule and Broadcasting tasks are performed by MTR System
support;

• the total duration of the chain of tasks included in this BP would decrease significantly, and
managers as well as instructors from the TrainingDelivery department would spend more
time on performing their basic functions (control of the maintenance procedures and
training, consequently) and less on administrative matters;

• due to the inclusion of the additional and rather sophisticated functions in the MTR System,
costs of the development and maintenance would increase.

The principles of static analysis of business processes can be carried out in a similar way for any
other business model regardless of the type of diagram representing the task chain.
Outline of Methodology 149

•
•
•
•
•

150

•
•
•
•
•

Figure 20-5: The modified version of Planning And Organization Business process diagram

DetermineLicenseExpiryDate
MTRSystem

ExamineReport
Manager

NotNeeded
85 % EXCLUSIVE

MakeRequest
Manager

PrepareCourseCatalogue
MTRSystem

DetermineEmployees
Determine employees

to be trained
OR
Manager

Support Scheduling
MTRSystem

MakeTrainingSchedule
TrainingDelivery

Messaging Fac ility
MTRSystem

TrainingProcess
TrainingDelivery

BroadCasting
Manager

ReceiveMessage
Employee

CourseCatalogueNeeded
15 % EXCLUSIVE

Weekly

LicenseExpiryReport

RequestCatalogue

EmployeeList

CourseCatalogue

CourseEmployeeMatrix

TrainingSchedule

StudentsGroup

Training Schedule Subset

ScheduledTrainingMessage

Decision
Chapter 20

21

Chapter 21
GRAPES-BM and Data Flow Modeling

The structured analysis and structured design [DeMarco 78, Gane 79] is one of the most widely
used system development methodologies. To the great extent, this methodology is based on the
modeling of data flows at all levels of system description - from the upper level of a system till
the flows between application software components. Data Flow Diagrams (DFD) are used to
represent such a model graphically.

The goal of this chapter is to show how GRAPES-BM can be used for data flow modeling
purposes. Data flow diagrams contain elements of the following four types: processes (or
functions); data stores; data flows and external entities (or agents). One of the most popular
sets of graphical symbols used to denote aforementioned elements is presented in the 2nd
column on Figure 21-1. The third column on this Figure contains GRAPES-BM symbols
which are semantically equivalent to the previous ones. GRAPES-BM symbols are used within
BP diagrams, and these diagrams can be used instead of the traditional data flow diagrams.

Name Data flow diagram symbols GRAPES-BM
BP diagram symbols

Process, function

Data store

External entity

Compute
price

Compute price

Invoices Invoices

Client Client
151

•
•
•
•
•

152

•
•
•
•
•

Figure 21-2 shows a simple data flow diagram developed by the traditional means.

Data flows

Name Data flow diagram symbols GRAPES-BM
BP diagram symbols

Table 21-1: Graphical symbols used in data flow and BP diagrams

Price
A

CPriceA

B

Store A

StoreA

CPriceA

C Price A

C

BA

A Store

A

C A

Store A

Price

Price

Price
Chapter 21

Figure 21-1: An example of the data flow diagram

The same example is presented as GRAPES-BM BP diagram on Figure 21-3. We can see that
full correspondence is reached in this case.

Specify
equipment

requirement

Validate
specification

Find
suppliers

Get cost
estimates

Choose
supplier

Place
equipment

order

Accept
delivery of
equipment

Check
delivery

items

Supplier
database

Install
equipment

Accept
delivered

equipment

Equipment
database

Equipment
specification

Equipment
specification

Checked
specification

Supplier list

Specification

Order
details

Delivery
note

Order

Order
notification

Instalation
instructions

Instalation
acceptance

Supplier

Supplier

Delivery
note

Equipment
details

1 2 4

3 5

Bookkeeping
system

6

7 8

9

10

Order
copy
GRAPES-BM and Data Flow Modeling 153

•
•
•
•
•

154

•
•
•
•
•

Figure 21-2: Representation of data flows using BP diagram

Data flow diagrams enable step-wise structuring of the model, too. A refinement of the Place
equipment function is shown on Figure 21-4. Traditional data flow diagrams syntax is used for
the refining purposes.

Place
equipment

order

6

Accept
delivery of
equipment

7
Check

delivery
items

8

Install
equipment

9

Accept
delivered

equipment

10

Get cost
estimates

4

Choose
supplier

5

Equipment
database

Specify
equipment

requirement

1

Find
suppliers

3

Validate
specification

2

Supplier
database

Bookkeeping
system

Supplier

Supplier

Specification

Delivery
note

Equipment
details

Checked
specification

Equipment
specification

Equipment
specification

Supplier
list

Order
notification

Order
details

Order copy

Delivery
note

Instalation
instructions

Instalation
acceptance

Order
Chapter 21

Figure 21-3: Refinement of the particular function in the DFD

Figure 21-4: Refinement of the same function in the BP

Orders file

Order
details

Completed
order

Signed
order

Order
notification

Order

Complete
order form

Bud get file

Adjust
budget

Validate
order

Record
order

Send to
supplier

Signed
order

Signed
order

Order
details

Order
amount

Order
copy

6.1 6.2 6.3

6.4

6.5

Complete
order
form

6.1
Validate

order

6.2
Record

order

6.3

Send to
supplier

6.4

Adjust
budget

6.5

Bookkeeping
system

Supplier

Choose
supplier

Budget
file

Orders
file

Accept
delivery of
equipment

Completed
order

Signed
order

Order
amount

Order
copy

Order

Order
details

Order
details

Signed
order

Signed
order

Order
notification
GRAPES-BM and Data Flow Modeling 155

•
•
•
•
•

156

•
•
•
•
•

Syntactically correct GRAPES-BM description of the same function is presented on Figure 21-
5. Note that more precise specification of interfaces is mandatory according to the principles of
GRAPES-BM language. Therefore references to the “environment” (neighbors of the function
under consideration in the previous level diagram) are included in this BP diagram.

As a rule, so called, context diagram (see Figure 21-6) has to be developed when the data flow
diagrams approach is used. An Equipment procurement system described by the data flow
diagram on Figure 21-6 is refined further in the DFD presented on Figure 21-2.

Figure 21-5: The context diagram of a data flow

In the case of GRAPES-BM, upper level BP diagram (Figure 21-7) is used instead of the context
diagram.

Figure 21-6: The context diagram in the BP form

If we introduce new upper level diagram, the BP diagram shown on Figure 21-3 has to be
modified slightly because now it is the 2nd (not more the 1st) level diagram. Consequently,
symbols of external entities in this diagram have to be replaced by the symbols of referenced
tasks (processes, functions):

GRAPES-BM language ensures more detailed (if compared with data flow diagrams)
description of tasks - a performer of the task, task duration, etc. can be specified. These
additional possibilities are helpful also in the situation when Task Communication diagrams are

Supplier Bookkeeping
systemOrder

Delivery
note

Order
copyEquipment

procurement
system

Equipment
procurement

system

Supplier Bookkeeping
system

Order

Delivery note

Order copy

Bookkeeping_systemSupplier
Chapter 21

used for data flow modeling purposes. If we want to describe a sequence of tasks more precisely
triggering conditions also can be used. This is the way how we can obtain a description of
business processes from the data flow model.

Nevertheless, there are essential differences between data flow diagrams and business processes.
First of all, these differences appear due to the usage of different methodologies:

• the sequence of tasks is taken in consideration firstly when we are developing the description
of business processes in BP form;

• only data flows between tasks (called processes or functions in this case) are taken into
account, and the sequence of tasks - ignored, when we are developing data flow model (either
in form of DFD or BP diagrams).

There are semantic differences, too:

• when the task symbol is used as an element of the business process, it is assumed that the task
produces events (usually - messages) which then are sent to another tasks. These events form
the FIFO queues in front of the tasks - receivers and wait in the queues till they will be
consumed by these tasks;

• when the task symbol is used as an element of the data flow diagram (and called therefore the
process or function symbol), an arbitrary activity producing some results are denoted by this
symbol. The meaning of the produced results could be understood usually from the name
(description) of the activity. If an data flow arrow leads from activity A to activity B:

• it is assumed that activity B somehow uses results produced by A. The way in which B uses
results of A also becomes clear from the name (description) of the activity B. Results
“consumed” by activity B at once can be produced during one as well as during multiple
executions of activity A. The name of data flow ddd is not an event name in this case, it
denotes the name of results “given” by the task A, or “taken” by the task B from the “storage”
of results produced and stored by A.

This means that events flow semantics used within business modeling is only one particular case
of data flow semantics.

Some collision could arise when the unnamed flow arrow is used: in the case of business
processes it denotes a control flow (a transfer of the control between tasks); in the case of data
flow diagrams it simply means that one activity uses results of the another activity. To avoid such
a collisions it is reasonably to attach names to arrows denoting data flows always. This also helps
to describe corresponding data flows more precisely.

A B
ddd
GRAPES-BM and Data Flow Modeling 157

•
•
•
•
•

158

•
•
•
•
•

Chapter 21

References

[1] Ganesh D.Bhatt. 1996. “Enterprise Information Systems Integration and Business Pro-
cess Improvement Initiative: an Empirical Study”. Http://hsb.baylor.edu/r…
r/acis/papers/bhatt.htm.

[2] Davenport T. Process Innovation, Harvard Business School Press, Boston, 1993.

[3] GRADE BM Version 4.0. Introductory Guide. INFOLOGISTIK GmbH, 1998.

[4] GRADE BM Version 4.0. Language Reference. INFOLOGISTIK GmbH, 1998.

[5] GRADE BM Version 4.0. Simulation Guide. INFOLOGISTIK GmbH, 1998.

[6] GRADE Version 2.0. Modeler, Registrator, Simulator: User Guide. 1995. INFOLO-
GISTIK GmbH, 23 Budapester Str., Munich, 608 p.

[7] Hammer, M, Champy, J. Reengineering the Corporation, Harper Collins, New York,
1993.

[8] Held, G; 1991. GRAPES Language Description: syntax, semantics and grammar of
GRAPES-86. Siemens Nixdorf Informationssysteme AG, Ed.: Gerhard Held, Authors:
Rudolf Haggenmüller et al. - Berlin; München., 304 p.

[9] Keller G., W. Brenner, (Eds) Business Reengineering mit Standartsoftware, Campus
Verlag, Frankfurt, 1995
159

•
•
•
•
•

160

•
•
•
•
•

	Introduction
	Goals of Business Modeling
	Main Concepts of Business Modeling
	2.1 Tasks
	2.2 Events
	2.2.1 Transfer Events
	2.2.2 Control Flow Events
	2.2.3 Timers

	2.3 Task components
	2.4 Data Manipulation

	Business Process Description
	Organization Structure
	Components of the Business Model
	Structuring of Business Processes
	Default Structuring of the Business Model
	Re-use of Tasks
	The Concept of a Transaction
	9.1 Transaction Identifiers
	9.2 End of Transaction

	Transactions in a Structured Model
	Goals and Limitations
	Organization Structure Modeling
	12.1 Organization Diagram (ORG)
	12.2 Attributes

	Data Modeling
	13.1 Datatype definitions
	13.2 Entity Relationship Diagrams

	Description of Events
	14.1 Event Table
	14.2 Event Attributes in BP

	Task Details
	15.1 Task type and task attributes
	15.2 Triggering conditions of a task
	15.3 Performers of tasks
	15.4 Task Duration
	15.5 Priority
	15.6 Max Instances
	15.7 Alternatives
	15.8 Informal Sections

	Task Outputs
	16.1 Branching Conditions
	16.2 Values of Output Events

	Example: Production Line
	17.1 Simplified view of tasks
	17.2 Probabilities of Defects

	Solution Templates
	18.1 Modeling of Memory
	18.2 Modeling of a Shared Queue
	18.3 Modeling of Interrupts
	18.4 Time Control
	18.5 Modeling of Counters
	18.6 When BM should not be used

	Overview of GRADE/BM
	Outline of Methodology
	20.1 Recommended Sequence of Business Model Development
	20.2 Static Analysis of Business Processes

	GRAPES-BM and Data Flow Modeling
	References

