
GRADE
Business Modeling

LANGUAGE REFERENCE

GRADE
Business Modeling

LANGUAGE REFERENCE

Copyright � 1998 by INFOLOGISTIK GmbH.

All rights reserved.

No parts of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, without the express written permission of INFOLOGISTIK GmbH.

Information in this document is subject to change without notice.

Release 4.0.3, Revised May 1998.

Contents

Chapter 1 Basic Concepts . 1
1.1 Notational conventions . 4

1.2 Identifiers in GRAPES-BM . 5

1.3 GRAPES-BM model tree . 6

1.4 Task visibility . 9

Chapter 2 Organizational structure description . 11
2.1 Introduction . 11

2.2 ORG diagram . 11

2.2.1 Elements of the ORG diagram . 11

2.2.2 Attributes of ORG elements . 13

2.2.3 General structure of ORG diagram . 17

2.2.4 The formal semantics of ORG diagrams . 19

2.3 Competence table . 20

Chapter 3 User-Defined Task Types and User-Defined Attributes for Tasks . . . 21

Chapter 4 Event table . 25
4.1 General structure . 25

4.2 Timer definitions . 27

4.3 Complex events . 29

4.4 The semantic aspects of event behavior . 30

Chapter 5 Task Details Diagram . 33
5.1 General form and role of TD diagram . 33

5.2 Referenced task symbols . 35

5.3 General contents of the task body . 38

5.4 Triggering condition . 40
iii

•
•
•
•
•

iv

•
•
•
•
•

5.4.1 Simple cases . 40

5.4.2 Syntax in general . 41

5.4.3 Semantics of triggering condition . 42

5.4.4 Control flows in triggering and semantics for occurrences 44

5.5 PERFORMER expression . 45

5.5.1 Syntax of the performer expression . 45

5.5.2 Semantics of the performer expression . 47

5.6 Other elements of task body . 47

5.7 Decisions . 51

5.8 Output events . 53

5.9 Input events . 55

5.10 External tasks . 55

5.11 Data stores and data objects . 56

Chapter 6 Business Process Diagram . 59
6.1 Role of BP diagrams . 59

6.2 Elements of BP diagrams . 60

6.2.1 Internal task symbol . 61

6.2.2 External task symbol . 62

6.2.3 Timer symbol . 62

6.2.4 Referenced internal task symbol . 63

6.2.5 Referenced external task symbol . 64

6.2.6 Referenced timer symbol . 64

6.2.7 Decision symbol . 64

6.2.8 Data symbols . 65

6.2.9 Event arrow . 66

6.2.10 Access path . 66

6.2.11 Auxiliary symbols . 67

6.2.12 Refinement of complex events . 68

6.3 General rules of BP structure . 68

6.4 Graphic layouts of the BP diagram . 69

6.5 Links between BP levels . 72

6.6 GRAPES-BM model development strategies and tool support for them . . 75

6.7 The alternative way: from TDs to BP . 77

6.8 Formal consistency rules between BP and TD . 78

Chapter 7 Transaction semantics of BPs . 81
7.1 The concept of the transaction . 81

7.2 Default behavior of transactions . 81

7.3 Transaction control facilities . 84

7.4 Attributes of transactions . 88

Chapter 8 Additional structuring features of business models 91
8.1 Interaction of primary tasks . 91

8.2 Independent tasks and the multiple use of tasks . 93

Chapter 9 Simulation parameters and their usage . 95

Chapter 10 Data in GRAPES-BM . 97
10.1 Constants . 97

10.2 Data Expressions . 99

10.3 Data type definitions in GRAPES-BM . 102

Chapter 11 GRAPES-BM semantics for simulation . 103
11.1 Preparation for execution - tree expansion . 103

11.2 Event routing . 104

11.3 Starting the execution, timers . 106

11.4 Starting a task . 106

11.5 Ending a task . 107

11.6 Sending an event . 108

Chapter 12 Simulation statistics . 109
12.1 General principles of automatic statistics gathering 109

12.2 Statistics and warm-up period . 110

12.3 Statistics for tasks . 111

12.3.1 Definitions of variables . 114

12.4 Statistics on performers . 119

12.5 Statistics on events . 123

12.6 Use of transactions for user defined statistics . 126
Contents v

•
•
•
•
•

vi

•
•
•
•
•

Chapter 13 Class diagrams . 129

Chapter 14 Global variables . 139
14.1 Variable table and relevant data types . 140

14.2 Assignment section in tasks . 141

14.3 Use of variables in other GRAPES-BM components 142

Index . 147

References . 151

1

Chapter 1
Basic Concepts

GRAPES-BM is a semi-formal language for modeling and simulation of business processes. It
is oriented toward a detailed description of various kinds of complicated business systems:
offices, information systems, production processes, enterprises etc. GRAPES-BM supports the
modeling of both the dynamic behavior and organizational structure of business systems.

The application areas for GRAPES-BM are:

• Business Process Re-engineering

• Analysis of work flows in business systems

• Systems analysis and requirements specification in Information System design.

GRAPES-BM supports two modes of usage:

• a semi-formal mode for modelers describing large business systems in a concise and easily
readable way

• a formal executable mode for simulation of business systems in order to gather quantitative
information on their behavior.

The Language Reference Manual describes the precise syntax and semantics of GRAPES-BM in
its entirety, both for semiformal and formal usage.

The description of system behavior in GRAPES-BM is based on two fundamental concepts:
tasks and events.

Tasks correspond to any activity performed in a business system. Large tasks are decomposed
into chains of smaller ones using Business Process diagrams (BP). This diagram displays the
business process in an easily readable flowchart type form.

Tasks have a number of formal and informal properties:

• triggering condition

• performer specification

• duration

• user defined attributes
1

•
•
•
•
•

2

•
•
•
•
•

• informal description

• objectives

and others.

All properties of a task are defined in a Task Details diagram (TD). The main properties of a
task are visible also inside its symbol in the BP diagram. There are two kinds of tasks:
transformation tasks and decision tasks. Decision tasks describe activities with possible
alternative outcomes and have decision symbols attached to them. Decisions may be informal
or formal.

The other fundamental concept is event. Events represent everything (signals, information,
documents, etc.) that move from task to task or influence a task in a business system. Events are
represented in BP and TD diagrams by arrows linking task symbols with the event name
adjacent to it.

There are message events, control flows and timer events in GRAPES-BM. Message events may
carry data with them and this data may influence the behavior of tasks.

BP and TD diagrams may also contain data store and data object symbols which have informal
meaning in GRAPES-BM.

The organizational structure of a business system is described in GRAPES-BM via the
Organization/Resource Structure (ORG) diagram. This kind of diagram is strongly related to
the traditional ORG-chart. Though, it is more formalized in the sense that all of its elements
may have formal attributes which influence the behavior of a system.

GRAPES-BM contains also some additional tables:

• ATR for describing user defined task attributes, associated with a task type

• ET for defining events (data types for message events, time moments for timer events, etc.)

• CMP for describing performer competencies

• AT for describing access to data stores

• SP for defining simulation parameters.

GRAPES-BM also uses two subtypes of DD diagram type borrowed from GRAPES/4GL.

• DD DATATYPES for describing data types of message events

• ER for defining entity-relationship models associated with data stores.

The restrictions on use of datatypes for simulatable models are presented in this document. PD
diagrams may also be used as pure comments for tasks. These diagrams are useful for semi-
formal descriptions of tasks containing, e.g. a complicated dialogue with other object.
Chapter 1

The diagrams and tables describing one business model are kept together by a special “header
diagram” BM, which has no content in and of itself. Formally, the BM diagram is opened via
the CL editor. There may be as many task refinement levels via TD and BP diagrams as
necessary in the given model. Tasks may be refined to whatever level of detail required by the
user via TD and BP diagrams.

A GRAPES-BM business model may be a standalone model or alternatively one or more
business models can be subordinated into a system model by placing them under a CO diagram
in a system model.

A model can contain a separate business submodel and a system submodel.

System modeling, involving CO, PD, DD, ER and VT diagrams, may be an activity closely
related to pure business modeling. The goal of such an activity may be to create specifications
for an Information System design on the basis of the results of the business modeling activity.
Semi-formal (non-executable) use of PD diagrams is recommended for this purpose. GRADE
V. 4.0 has facilities for building an initial system model (CO and PD diagrams) from a business
model and vice versa.

A completely new feature in GRADE V. 4.0 is the possibility to utilize the Object Modeling
Technique (OMT) by J.Rumbaugh et al. A new type of diagram - the Class (CL) diagram has
been introduced for this purpose. CL diagrams contain symbols for class, association,
is_subclass_of, note and other concepts. Several graphic styles are supported for associations -
one close to the original Rumbaugh notation, as well as the new Unified Modeling Language
(UML) style. Actually, a precise subset of the UML 1.0 Class diagram notation is supported.
The Class diagram in GRADE can be used for describing the overall static structure of a
business system during the first stages of modeling. In other words, the modeling of a business
system could start with Object modeling and move on to "proper" Business modeling when a
satisfactory description of the static structure has been attained. Some initial fragments of the
business model (ORG and DD diagrams) may be generated automatically from an object
model.

This document describes GRAPES-BM V.4.0. GRADE V.4.0 is upwards compatible with
GRADE V.3.0, and GRADE V.4.0 can process the diagrams created with GRADE V.3.0. The
conversion procedure in GRADE V.4.0 performs the necessary adjustments automatically
during conversion of GRADE V.3.0 models. The conversion takes place in two phases. In the
first phase, the model must be exported in EI format using the GRADE Modeler V.3.0 Export
model in EIF command. In the second phase, the model in EI format is imported and saved in
GRADE V.4.0 repository format. No information is lost during the conversion, simulatable
models remain valid too. Some diagram types have been renamed in V. 4.0 according to the
following table:
Basic Concepts 3

•
•
•
•
•

4

•
•
•
•
•

Some diagram types in GRAPES/4GL have also been renamed. Please refer to the on-line help
for their new names.

The Language Reference Manual has the following structure. First, the model tree and
associated concepts are described. Then, the formal description of each diagram or table type
follows. After that, special features involving several types of diagrams are discussed. The
document continues with the summary on some auxiliary topics, such as the use of expressions
and semantics of diagrams for simulation. In the conclusion, short notes on the Class diagram
are presented.

1.1 Notational conventions

The separators shown below are used in the syntactic notation in this document. (To distinguish
them from terminal symbols, they are printed in boldface.)

In the simplest cases x1, ... , xn is written instead of x { ,x }* .

In some places, the standard notation traditionally present in BNF style language grammars is
used also in this document:

nonterminal ::= syntax_definition

Short name in
V.3.0

Full name in V.3.0 Short name in
V.4.0

Full name in V.4.0

TCD Task Communication Diagram BP Business Process Diagram

TSD Task Specification Diagram TD Task Details Diagram

CD Communication Diagram CO Communicating Objects Diagram

CM Comment Diagram CMT Comment Diagram

DT Data Table VT Variable Table

Table 1-1: Changes in diagram types

Notation Meaning

[] Optional element

{} Group of elements that can be used alternatively

| Separator for alternative language elements

{}* Repetition - null or multiple

{}+ Repetition - one or multiple

Table 1-2: Elements of syntax notation
Chapter 1

means that this nonterminal (which is a part of a larger syntax construct) is to be replaced by
the given syntax definition.

1.2 Identifiers in GRAPES-BM

As in any formal language, elements can be addressed in GRAPES-BM via identifiers (names).
The concept of identifiers is different for simulatable and semiformal models:

- In a semiformal model: an identifier is an arbitrary string which contains at least one letter
and possibly a number of other letters, numbers or special characters. All characters may be
used, with the except for the following characters:

- parenthesis (and) ,

- brackets [and] ,

- periods . ,

- commas , ,

- colons : ,

- semicolons ; ,

- asterisks * ,

- equal signs = ,

- less than signs < ,

- greater than signs > .

- In a simulatable model: an identifier is a string which begins with a letter and may only
contain letters, numerals and the underscore _.

For all models, the length of an identifier may not exceed 64 characters.

GRADE editors permit the use of blanks in identifiers during input, but nevertheless they are
later internally replaced by underscore characters. By default, GRADE editors also show and
print these names with blanks inside. GRADE can also be configured to show names as they are
stored in the repository, with underscores, using the option Options/Settings/Underscores visible.
But all simulation oriented components show the formal names with underscores.

Uppercase and lowercase letters in identifiers are treated as identical in language syntax (but they
are preserved by editors). Thus, the names CUSTOMER, customer and Customer represent
identical identifiers. If you enter the same identifier repeatedly using a different case, namely the
last version will be used throughout the model.

A number of GRAPES-BM language elements - tasks, events, data stores etc. may also have so-
called alternative names. These names are not proper GRAPES-BM identifiers and are strings
containing arbitrary characters.
Basic Concepts 5

•
•
•
•
•

6

•
•
•
•
•

1.3 GRAPES-BM model tree

Just as in other GRAPES-family languages, a business model is represented as a hierarchy of
diagrams and tables. This hierarchy is described via the model tree.

A model in GRADE may consist of three separate submodels:

• object model

• business model

• system model

When a new model is created, templates for these three submodels are offered. The user may
select which of the submodels will actually be present in the new model tree. Each of the
submodels is represented by an independent subtree.

The model tree for a standalone business model has the following structure:

• the business model is headed by a special “header diagram” BM, which serves as a placeholder
for the business model name;

• to the right of the BM diagram the auxiliary diagrams ET, CMP, SP and VT can be found
for that model. The CMP table is described in section 2, the ET diagram - in section 4, and
SP is a special table used for simulation which is described in section 9. VT - the variable
table - is described in section 14;

• just under the BM diagram there may be one or more ORG diagrams. ORG diagrams are
described in section 2.

• just under the BM diagram there may optionally appear ATR tables - one for each task type
defined in the model. If no task types are defined, there are no ATR tables in the model tree.
ATR tables are described in section 3;

• one or more DD and/or ER diagrams may be placed just under BM, for use in the business
model;

• each task has a row in the model tree. This row is started by a CMT diagram, and then
follows the BP diagram, if the task has a refinement. If the task has no refinement, its BP
diagram is empty. The TD diagram of the task is placed to the right of the BP. A task which
is a part of (a refinement of) another task is placed just beneath it; and

• a task may have an AT table and PD diagram. These diagrams are placed in the far right of
the row. PD diagrams are purely illustrative in BM.

Figure 1-1 shows an example of the model tree for a standalone business model.
Chapter 1

Figure 1-1: Model tree (standalone business model)

Business modeling may also be mixed with system modeling. In that case:

• the business model may be placed under any CO diagram (in most cases it will be under the
top CO)

• the only “outer” diagrams visible inside the business model are DD and ER diagrams (they
must be placed beside or above BM)

• there may be several disjointed business models in a tree. These models are independent of
each other.

Figure 1-2 shows a model tree with the business model as a part of a system model.

BUSINESS MODEL CarRentalBMCMT VT ET CMP SP

CarRentalORGCMT

TYPE comm1ATRCMT

TYPE tp1ATRCMT

TYPE tp2ATRCMT

DATATYPES DD1DDCMT

TASK Task1BPCMT TD AT PD

TASK Task11BPCMT TD AT PD

TASK Task12BPCMT TD AT PD

TASK Task2BPCMT TD AT PD

TASK Task21BPCMT TD AT PD

ALTERNATIVE Task21 ABP

TASK Task222BPCMT TD AT PD

TASK Task223BPCMT TD AT PD
Basic Concepts 7

•
•
•
•
•

8

•
•
•
•
•

Figure 1-2: Model tree (business model as a part of system model)

Some additional remarks on the business model tree:

• top-level tasks which have refining BP diagrams (referred to as primary tasks) are of special
significance - they represent the main business functions of a system

• alternative refinements of a task via several BP diagrams are permitted. The “main” (or the
sole) BP diagram has the same name as the task itself and is shown in the same row. Other
alternative BPs have their individual names and are placed in subsequent rows just beneath
the TD diagram (with the qualifier Alternative instead of the standard one Task).

The object submodel frequently consists of just one CL diagram. But there may be an arbitrary
hierarchy of CL diagrams. For example, the top CL diagram may represent the whole business
system while its subordinates represent various partial views on the system. CL diagrams are
described in section 13. A complete business or system submodel may also be attached under a
CL diagram. Figure 1-3 shows an example of the model tree for an object submodel.

SYSTEM MODEL EnvironmentCOCMT TO TO

DATATYPES CommTypesDDCMT

CarRentalBMCMT VT ET CMP SP

CarRentalORGCMT

TYPE comm1ATRCMT

TYPE tp1ATRCMT

TYPE tp2ATRCMT

DATATYPES DD1DDCMT

TASK Task1BPCMT TD AT PD

TASK Task11BPCMT TD AT PD

TASK Task12BPCMT TD AT PD

TASK Task2BPCMT TD AT PD

TASK Task21BPCMT TD AT PD

ALTERNATIVE Task21 ABP

TASK Task222BPCMT TD AT PD

TASK Task223BPCMT TD AT PD

Obj1COCMT TO TO
Chapter 1

Figure 1-3: Model tree of an object submodel

The system submodel, which starts with the top CO diagram, is used for traditional system
modeling purposes and has the structure described by GRAPES/4GL rules. See more on it in
the Online Help.

1.4 Task visibility

An important concept in GRAPES-BM is the visibility of tasks.

The visibility rule used is the traditional one for GRAPES. Only these tasks are visible in a BP
diagram which are placed:

- directly under the given BP - in the case of direct refinement;

- somewhere above the given BP (i.e., at the same level as one of the grandparents) - refinement
via a common task;

- directly as one of the grandparents - recursive refinement, though not permitted for
simulatable models.

Thus a task is invisible if it placed in another refinement branch. If two tasks with the same
name are in the same branch, only the lower one is visible. Task names may reappear in different
refinement branches - these tasks have nothing in common. Any task may have an unlimited
number of occurrences in BPs wherever it is visible, all these occurrences mean a reference to the
appropriate defining TD diagram.

Normally, a task which is part of another task is placed just under it. If there is a need for
common use of this task in several BP diagrams, the task must be moved higher up in the model
tree. See more on this topic in Section 8.2.

All other elements of a business model - events, organizational units, task types/attributes,
competencies - may only be global for the whole business model.

OBJECT MODEL BankCLCMT

Instruction1CLCMT

Instruction2CLCMT

OrderCLCMT

QueryCLCMT

RequestCLCMT

RouteCLCMT

Transaction listCLCMT
Basic Concepts 9

•
•
•
•
•

10

•
•
•
•
•

Chapter 1

2

Chapter 2
Organizational structure description

2.1 Introduction

Organizational structure is described by means of two diagrams, or more precisely, one diagram
and one table:

• ORG diagram

• Competence table (CMP)

Both the ORG diagram and the CMP table are optional. ORG must be present if performers
are specified in tasks. Only those performers included as elements of the ORG diagram may be
used as performers in tasks for simulation purposes. A business model may contain one or more
ORG diagrams. If there are several ORG diagrams, they should be thought of as dividing up
one large diagram into several logical pages.

2.2 ORG diagram

The ORG diagram is the basic facility for organization/resource structure description. The
organizational structure is described in a tree-like manner similar to traditional ORG-charts.
The main difference is in the more formalized syntax and semantics and the inclusion of
resources. The elements of the ORG diagram may have formalized attributes. An interesting
feature of the ORG diagram is the possibility to create separate subtrees within an ORG-chart
as separate subordinate trees within the same ORG diagram.

An example of the ORG diagram is given in Figure 2-1.

2.2.1 Elements of the ORG diagram

The following element types are present in ORG diagrams
11

•
•
•
•
•

12

•
•
•
•
•

1 single organizational unit:

2 multiple organizational unit:

3 single position:

4 multiple position:

5 single resource:

6 multiple resource:

The informal semantics of element types is the following:

• organizational unit represents enterprise, branch, department, laboratory, etc.

• position represents any position type, like CEO, manager, programmer, secretary etc.

• resource represents any equipment or other reusable resource such as a car, computer, printer,
machine, or tool.

The following relationships between elements are present in ORG diagram.

• consists of

• owns

name

name
3

name

name
3

name

name
3

Chapter 2

• manages

Referring to the above-numbered elements of the ORG diagram, elements may follow each
other according to the following rules:

1, 2 may be followed by 1, 2, 3, 4 via consists of

1, 2, 3, 4 may be followed by 5,6 via owns

5, 6 may be followed by 5, 6 via consists of

3, 4 may be followed by 1, 2, 3, 4 via manages

It means, that both single and multiple element of the same kind may have the same
relationships. The types of relationships are distinguished only from the informal modeling
point of view.

The same graphical notation - a line from an element to its follower is used to represent all types
of relationships. This is due to the fact that the relationship type is determined uniquely by the
types of the source and sink elements of the line.

The requirement that elements of ORG have a certain hierarchy is based on specified rules,
which are essential for the informal semantics of the diagram and its readability. The violation
of these rules does not affect simulation. Therefore no syntax checks are performed to ensure
that elements follow each other correctly in the current version.

ORG diagrams may contain the standard free comment symbol which does not affect
semantics.

2.2.2 Attributes of ORG elements

Name is the identifier of each element in an ORG diagram. Aside from that, any element of
ORG diagram may have the following optional attributes:

• type - internal or external, internal is by default, external specifies that the organizational unit
belongs to an external partner of the enterprise;

• number of instances (for multiple ones),

• availability;

• cost per hour;

• competence (identifier, one or several, comma separated, i.e., actually a competence list can
be used);

• efficiency level. It can be any real number, e.g., 0.5, greater than 0. In this case it means that
given performer can do his work with efficiency 50%. Duration time for the task corresponds
to the efficiency level 1. The real duration can be obtained via the formula:

formal_duration / efficiency_level
Organizational structure description 13

•
•
•
•
•

14

•
•
•
•
•

If a task has several ANDed performers/resources in its performer expression in a TD, the
minimal efficiency_level (from the referenced ones) is used in the formula.

• employee name - only for position type elements.

The default setting for the Type attribute is that for internal actors. The External type attribute
is shown by the dashed line used for the element contour, e.g.,

Normally the usage of external organizational units (and their "components") as performers
should make the task an external one, but formally, task externality is independent of performer
externality.

Number of instances may be used only for multiple elements. If it is not specified, an unlimited
number of instances is assumed. The number of instances must be a non-negative integer
constant. Zero means the performer is unavailable, one is the same as a single performer.

Availability specifies the time intervals when the ORG element is available as a performer.
Availability is defined as a sequence of time unit specifications in a descending order. It includes
years, months, days, hours and minutes. Two abbreviated formats may also be used:

- from years to days (date part only)

- only hours and minutes (hour part only)

Day specification (a day constant) may be in one of two forms

- date of month (from 01 to 31)

- weekday (from MON to SUN)

Year specification (year constants) are four-digit numbers in the form 19xx or 20xx, month
specifications are from 01 to 12.

Each year, month and day specifications may be

- an asterisk character (not in parenthesis!)

- a single constant value (in parenthesis or not)

- a single interval i.e. constant-constant (in parenthesis)

- a comma-separated list of constants and/or intervals (in parenthesis)

The separator between the date units is a period. The date and hour parts are separated by just
one blank space (if both parts are present).

name
3

Chapter 2

The hour part (if present) is always placed in parenthesis. Any hour constant contains combined
hour and minute notations, separated by a colon, i.e., hh:mm, where hh is from 00 to 23 and
mm from 00 to 59.

The hour part may be:

- a single constant

- an interval, i.e. constant-constant

- a comma separated list of constants and/or intervals

The whole availability specification may contain no additional blank spaces (except just one
blank space between date and hour parts). The whole specification is contained in double-
quotes. All numbers always contain two or four digits respectively.

The ends of an interval must be in increasing order. It is not permitted to mix the date of month
and weekday specifications in one availability definition. If an interval including the end of the
month is to be specified, it must be split into two intervals, e.g. (01-03,25-31). Invalid dates
such as 02.30 never make the ORG element available, although no error is reported.

Examples of availability specifications:

The semantics for availability are the natural ones. * means no restrictions on the unit. All
intervals and value lists with different units are always combined together (e.g., working hours
are applied to all specified working days). If the lowest unit has a single constant value, the
availability is valid while this unit has the specified value. Omitting the date part means

Availability Meaning

”(08:00-17:30)”

”*.*.(05-20) (09:00-18:00)”

”*.*.(MON-FRI) (08:30-16:15)”

”*.*.(MON-FRI) (09:00-13:00,14:00-18:00)”

”*.(04-09).(MON-FRI)”

”*.*.(MON,WED) (10:00-14:00)”

”(1995-1997).(05,09).01 (09:00-16:00)”

”*.*.01 (00:00-23:59)” available on the first of every month, 00-24 (24 is never
used!)

”*.*.01” the same as previous

Table 2-1: Examples of availabilities
Organizational structure description 15

•
•
•
•
•

16

•
•
•
•
•

availability every day. For example, “(17:30)” means availability for one minute every day at
17:30 (a very strange performer, certainly, a more realistic case is availability for just one day
every month).

Cost per hour is an integer or float constant. It is used to calculate automatically the cost of a
task, by multiplying it with a task’s duration.

The Competence list of an ORG element specifies its competencies (from the CMP table, see
2.3). Competence is a performer characteristic in a broad sense, which may be used in task
specifications to select a performer with the given characteristics. It is mostly used with
positions.

Employee name may be used only for single positions. If there are several similar positions
distinguished only by employee names, the position symbol has to be repeated the required
number of times. Employee name must be used as an identifier in GRAPES-BM, since it is the
only way (aside from competencies) to select one specific performer (in a task’s performer
selection expression) from many with the same position name.

Normally all attributes (which have been defined by the user) are visible inside all elements of
an ORG diagram. You can make some of the attributes invisible, either for a single element or
for a group of elements. The visibility does not affect the syntactic significance of an attribute.
The attribute visibility is taken into account at hardcopy printing.
Chapter 2

Figure 2-1: Example of ORG Diagram (with attributes invisible)

2.2.3 General structure of ORG diagram

In general, the ORG diagram appears as a forest containing several trees. The nodes of the trees are
the above mentioned elements, and branches represent the above mentioned relations between the
element instances (in a normal way, from top to down).

A typical situation in ORG diagrams, is such that the leaves of a tree are refined further by other
separate trees in the diagram. The reference is made by virtue of the fact that the leaf has the
same name (and element type) as the root of the refining tree.

The names of separate objects (i.e., the names of tree roots) must be unique diagram-wide.
Names of non-root objects may repeat. A tree may be referenced several times, each reference
denotes a separate object (with the same characteristics). Any of the elements may serve as a tree
root. There may be several unreferenced roots.

MII

Administration

Director

Accounting

Accountant

A_computer

Informatics_department

Independent_labs
3

Building

Mathematics_department

Informatics_department

Head

Artif_intel_laboratory

SE_laboratory

SE_laboratory

Head

SE_programmer
4

SE_computer
3

Building

Floor_1

Floor_2

Floor_3
Organizational structure description 17

•
•
•
•
•

18

•
•
•
•
•

Another requirement is that units and resources directly under a common parent must have
unique names.

There is an exception for positions. Position is the only performer type, where several equally
named objects may be placed at the same non-top level (with different competencies or
employee names, as a rule). If such a feature is used, then none of these equally named position
elements may have a resource symbol under it.

If several ORG diagrams are present under the same BM placeholder, they all are treated as
logical pages of a large integrated diagram. Therefore for simulatable models, the uniqueness
requirement applies to all these ORG diagrams, as do the object referencing requirements.

For informal models, several ORG diagrams may be used to express different views on the same
organization structure. For example, one ORG diagram may express a strict structural view -
only the consists of and owns relationships are in it, all positions, including managerial ones, are
under the corresponding units. Another ORG diagram may express the manages view of the
same structure - all managers are placed above the units managed by them. Certainly, the objects
- units and positions will be the same in both diagrams. GRADE editors completely support
such a style, including Pick Name and Data dictionary service. Certainly, the syntactic analysis
will reveal a lot of duplicated object definitions in such a case, therefore additional views should
be removed if the model is to be used for simulation. The user may even invent his own specific
relationship between ORG elements to be represented in a separate ORG diagram.

By default, the ORG diagram editor is in the “vertical refinement” mode, as shown in Figure 2-
1. However, it is possible at every node (independent of other nodes) to switch to the horizontal
layout for successor nodes, then switch back to the vertical layout at some lower point and so
on. In this way the example from Figure 2-1 may be displayed as depicted in Figure 2-2. Thus
one can obtain also the traditional ORG-Chart form for an ORG diagram.

Figure 2-2: Example of Horizontal ORG diagrams

MII

Administration

Director Accounting

Accountant
A_computer

Informatics_department
Independent_labs

3 Building Mathematics_department

Informatics_department

Head Artif_intel_laboratory SE_laboratory

SE_laboratory

Head

SE_programmer
4

SE_computer
3

Building

Floor_1

Floor_2

Floor_3
Chapter 2

2.2.4 The formal semantics of ORG diagrams

Since the ORG diagram is a set of pure trees, every occurrence of an element (unit, position, resource)
with a given name defines a real separate element, which can be used as a performer. Two equally
named elements in a tree represent two performers, which can be distinguished by using qualifiers in
performer selection expressions.

Any independent tree, whose root is referenced nowhere, represents an independent performer
(of the appropriate type). However, as soon as a reference to it (i.e., an equally named leaf in
another tree) appears, the performer is placed in the referencing tree and there is no more
independent copy of it. Thus in the ORG example (Figure 2-1 or Figure 2-2) there is only one
instance of Building or SE-laboratory available during execution. If the root name occurs in a
tree in a non-leaf position (i.e., with a subtree beneath it), then this occurrence is marked as an
error. In other words, it is forbidden to make a local redefinition of an independent tree.

All this refers also to elements placed in several ORG diagrams of a business submodel.

The same consists of (or owns) semantics is assumed for descendants of multiple elements. It
means that there are several elements with the same internal structure or ownership, e.g., 3
(unnamed) laboratories containing the same set of positions, 4 programmers each owning a
personal computer (with equal characteristics) etc. The manages relationship has the same
formal meaning. For example, a manager with multiplicity 4 causes 4 copies of Department
managed by him to appear.

In addition, inheritance is applicable to availability and efficiency. If at any level (starting from the top
one) one of these attributes is specified, and is not specified in a subsequent level (or levels), then the
value is copied to this subsequent level (or levels). All element types are equal from the inheritance
point of view, only the tree structure is significant. When at a lower level the attribute is again defined,
it redefines the inherited value. Both for availability and efficiency it means complete redefinition.

Cost and competence are not inherited, since they may have different meanings at different
levels.

The general default for attributes (when nothing is inherited) is always for availability, 1 for
efficiency, none for competence and 0 for cost.

If an ORG-unit cost per hour is required, then either the explicitly specified value is taken, or
the sum of components (just one level below) cost per hour is taken (if the explicit value is
absent).
Organizational structure description 19

•
•
•
•
•

20

•
•
•
•
•

2.3 Competence table

Competence table (CMP) defines the list of competencies which can be used in the business
model. A competence is anything that can qualify a performer’s ability to perform a task - a
competence, skill, authorization, qualification etc. Each competence definition entry contains
its sole attribute - the competence identifier.

All table entries may contain a comment.

The competence identifier can be an arbitrary identifier with no additional semantic meaning.
All competence identifiers should be unique. Its sole purpose is in enabling a task’s performer
expression to select one from a group of similar performers based on a specifically defined
competence. Competence is mainly used for positions, where it can help to select one from
several equally named positions at the same level. Nevertheless, competencies may be used to
give a certain object-oriented style to the ORG diagram. They may be used to model
subtype/supertype relations between ORG objects as well as “deputy” performer type
relationship. Competencies also permit the user to select performers for tasks based on qualities
independent of their placement within the organizational structure.
Chapter 2

3

Chapter 3
User-Defined Task Types and User-Defined
Attributes for Tasks

Any Business Model may contain tasks of different types. Each task type has its own list of
attributes.

A task type is defined by the corresponding Task Type or Attribute table (ATR), which contains
the type name. Untyped (tasks without assignment of a task type) tasks have no attributes.

Additionally, task types can be defined without defining attributes by leaving the ATR table
blank.

Example of Attribute Table is given in Figure 3-1.

Figure 3-1: Example of Attribute Table ATR

The Attribute Table contains the following columns:

Attribute name defines the name of an attribute. It is an identifier. All names within a table
must be unique.

Data type defines the data type of the attribute. Only the following elementary types can be
used:

integer, float, string, time, duration.

cost_s INTEGER 10 DM

days list 1 , 3 , 5

man_hour duration duration * people

name STRING

people INTEGER 1

redo FLOAT 0.5 %

total_cost INTEGER cost_s * people

Attribute name: Data type: Default: Unit: Formula: Description:
21

•
•
•
•
•

22

•
•
•
•
•

An additional special type LIST is permitted, in this case the value of the attribute may be any
list of elementary data elements. String and LIST may not be used for derived attributes, nor
may they be referenced in formulas. The default maximum length for strings is 255. Neither the
additional type attributes (as found in GRAPES/4GL) nor user defined “elementary types” may
be used here.

The sole use of string attributes in this version is to allow the user to define informal
characteristics for a task for later export to other tools (e.g. “work-flow” systems).

Default defines the default value of the attribute. A proper constant (i.e., literal) of the
appropriate type or a named constant from SP may be used here. The default value is used if the
attribute is not re-defined in the TD where it is used.

Unit defines a text string which defines the units of measurement for the attribute (typically:
DM, USD, %). The unit has no effect on attribute value, e.g., 70% is treated as integer 70 in
formulas. The unit is a pure comment and does not appear outside the ATR table.

Formula defines the value of derived attributes. It is an arithmetic expression composed of other
attributes and constants. The formula may be redefined in a TD for an individual task, and
input event fields may also be referenced there. If the type is meant for elementary tasks, the
formula may contain only standard arithmetic operations. If the task type is meant for
transaction (non-elementary) tasks (see more in Section 7.4), the formula may contain also so
called vertical operations (SUM, MAX, MIN, AVG). The operand in such operations may be
any numeric or DURATION type attribute in any ATR table. The semantics of such operations
are explained in section 7.4. Random generator functions of the appropriate type may also be
used. Named constants from SP may also be used. See more on formula syntax in Section 10.2.

Formulas may also contain the two predefined attributes of the task: duration and cost (the
duration reference in formula of Figure 3-1 means the task duration, which is of type duration).

A derived attribute may reference another derived attribute in its formula, but no circular
references are permitted. The actual reference validation is performed in the TD during
simulation where redefined attributes are also taken into account. The order of the entries in the
ATR table has no semantic meaning.

Numeric constants are defined in the standard syntax.

Time constants have either the full date_time form or date only; standard separators are used,
e.g., “1995.05.19 18:38:00”(seconds must be present in the time part). Duration constants may
contain any consecutive units from days to seconds in descending order (separated by colon),
e.g., “100d:5h”, “1h:30m:53s”, “95m”. The numeric elements in duration constants may be
integers or floats, e.g., “0.5h” is also permitted. See more on constant syntax in Section 10.1.

Description contains an arbitrary descriptive text for the attribute.
Chapter 3

A task of a particular task type may possess all the attributes which are defined in the
corresponding ATR table for this task type. For each task of a given type, some attributes may
be redefined in the TD of a particular task. The definitions of the remaining attributes are taken
from the ATR table. If both a default value and formula are defined, the formula takes
precedence. If both columns default and the formula in the ATR are empty for an attribute and
it is not redefined in the TD, the attribute has undefined (NULL) value (and consequently, is
ignored in any statistics computation).

Several ATR tables may contain equally named attributes. No restrictions apply unless such an
attribute is used in vertical operations. In the latter case the attribute must have the same type
in all ATR tables where it appears.
User-Defined Task Types and User-Defined Attributes for Tasks 23

•
•
•
•
•

24

•
•
•
•
•

Chapter 3

4

Chapter 4
Event table

4.1 General structure

The event table (ET) describes all events appearing in a business model. There is only one event
table per business model. In the model tree, ET is located in the “header” row of a business
model, i.e. to the right of BM. Figure 4-1 shows an example of the event table. The event table
has the following columns:

• Event name

• Alternative name

• Category

• Data type

• Persistence interval

• Transfer time

• Description

Figure 4-1: Example of Event Table

The Event name of an event is an identifier. Any event is visible in the whole business model.

Category has one of the predefined values:

Application Message applDT "5h"

Car Material "30m"

Earthquake Message "5m" EXPONENTIAL
("3m")

Every2m Timer REPETITION(
EXPONENTIAL("2m"))

From5to6pm Timer TIME("*.*.* (17:00)") "1h"

Morning Timer TIME("*.*.* (09:00)")

Registration Complex (Application, Car)

Event name: Category: Data type: Persistence
interval:

Transfer time: Description:
25

•
•
•
•
•

26

•
•
•
•
•

• Message - any event carrying some information

• Material - an event carrying some physical objects

• Timer - timer event

• Complex - complex event containing several elementary events

or a user defined category name, which can be any identifier. There is no formal difference
between Message, Material and any user defined category since they are treated informally in
simulation and are meant only to enhance the understandability of a business system. Events of
any of these categories may have a data type specified and, consequently, carry data of the
specified type. If the type is not specified, then the event carries no data (it is like a Signal). All
these categories are sometimes informally referred to as message events.

Timer and complex events are of a completely different nature, and they are described in 4.2
and 4.3 respectively.

Pure control flows have no name and, therefore, don’t appear in ET at all.

Data type is a predefined or user defined type name. It specifies the data carried by the event. Type
must be either elementary (from the predefined list: integer, float, duration, time, string) or a user
defined record. This record may contain other records in turn (in arbitrary depth). In general, the
types of record fields may be arbitrary. But the subset of record fields really used in the data context
of business modeling (i.e. referenced as input or output event fields in attribute sections, SET-options,
REPEAT-options, triggering conditions or decisions) must satisfy a stronger requirement. These
fields must be:

• elementary

• have one of the types integer, float, duration, time, without any additional type attributes.

Events of the type string are also not permitted to be referenced in the above-mentioned data
context. The type validity of each event or event field to be used in the context of data is checked
at the point of its use in the TD.

For timers the same type column is used for time moment definition, and for complex events it
is used for component definition.

Persistence interval column is either empty or contains a duration constant

The duration constant may be a proper constant or a so called constant duration expression.
This is a duration expression which may contain random duration functions and permitted
operations, but with proper constants as the only ultimate arguments. See more on precise
syntax in section 10. Named constant from SP may also be used for persistence interval.

The persistence interval characterizes the time period for which the event persists in an input
event queue. If the interval is not specified, the default persistence is

• 0s for timers

• unlimited time interval for any other event
Chapter 4

See more on actual event semantics in 4.4.

Transfer time: this is a duration constant or a constant duration expression (the same as for
persistence) which defines the time necessary to transfer the given event between the sending
and receiving task. The transfer time can be redefined in the BP diagram (separately for each
occurrence of this event). Named constants from SP also may be referenced, either directly or
in random expressions. See more on syntax in section 10.

Transfer time is ignored for timer events. For an event route consisting of several arrows (see 6.5)
transfer time is counted once.

The alternative name is an additional qualifier of the event, for example the event’s catalogue
no. in the company-wide document catalogue. This name may be made visible in the ET and
in the event’s occurrences in BP diagrams. An alternative name may be an arbitrary string. These
names are not used in simulation.

By default, GRADE ET editor makes the columns Alternative name and Persistence interval
invisible. For simulatable models, the Persistence interval column should be made visible.

Description contains an arbitrary descriptive text for the event.

4.2 Timer definitions

Timers are specified by entering their definition in the type column.

Timer definition syntax is in one of the two forms:

• time form

• repetition form

The time form has the syntax:

TIME (time_specification)

where time_specification has a similar syntax to the availability definition in ORG diagrams.

More precisely, time specification is a sequence of time unit specifications in descending order.
It includes years, months, days, hours and minutes. The sequence always starts from years and
may end at any of the units. The only exception is that hours and minutes are always combined
- if hours are present, then minutes also must be.

Day specification (day constant) may be in one of two alternative forms:

- day of month (from 01 to 31)

- weekday (from MON to SUN)
Event table 27

•
•
•
•
•

28

•
•
•
•
•

Year specifications (year constants) are four digit numbers in form 19xx or 20xx, month
specifications are two digit numbers from 01 to 12, hour specifications - from 00 to 23
respectively, minute specifications - from 00 to 59.

The separator between years and months and between months and days is a period, between
days and hours - exactly one blank space, between hours and minutes - a colon.

Each of the year, month and day specifications may be

- a single constant value (in parenthesis or not)

- an asterisk character (not in parenthesis)

- a single interval, i.e. constant-constant, in parenthesis

- a comma-separated list of constants and/or intervals, in parenthesis

Hour and minute constants always appear combined. Thus, hour-minute specification may be

- a single constant in the form hh:mm (with or without parenthesis)

- asterisk either in the hour position, or in the minute position, or in both (*:mm, hh:*, *:*),
with or without parenthesis

- a single interval, i.e. constant-constant, in parenthesis

- a comma separated list of constants and/or intervals, in parenthesis

The whole time specification expression may contain no additional blank spaces (except the one
between days and hours). The whole specification is embraced by double quotes. Numeric
values for month, day, hour, minute must always contain exactly two digits.

Four asterisks may be used instead of one in year position, and two asterisks may be used in
month, day, hour and minute positions. The semantics is the same, e.g., “****.**.**” is the same
as “*.*.*”. Mixing asterisks with digits is prohibited.

The ends of an interval must be in increasing order. If an interval includes e.g., the end of the
month, it must be split into two, for example

“*.*.(01-05,15-16,28-31) 09:00”

The remark refers also to weekdays, e.g.,

(MON-TUE, FRI-SUN)

for service closed on Wednesday and Thursday. Invalid dates such as 02.30 or 11.31 simply
never occur.

Valid time specification examples:

“*.*.* 09:00”

Table 4-1: Time specification examples
Chapter 4

The special built-in function Start_time may also be used as a time_specification. Such a timer is
activated only once at the start of the simulation session. The syntax is:

TIME (Start_time)

A time-based timer is triggered every instant the smallest time unit explicitly specified in the
time specification becomes valid (but the periodicity of it determined by the lowest interval or
* element).

The repetition form has the syntax

REPETITION (duration expression)

The duration expression may contain only duration constants and functions of constants, i.e.
the same style constant expression with random functions as those used in the persistence interval
column. See more on the syntax of such expressions in section 10.

Examples.

REPETITION(“10m:30s”)

REPETITION(UNIFORM(“1d”,”3d”))

Repetition-based timers are triggered periodically after the specified interval (constant or
random) has elapsed. The first triggering occurs after the specified interval has elapsed from the
session start-up time.

If more complicated behavior in terms of time is required (e.g., for a realistic simulation load
generator), timers must be combined with availability.

4.3 Complex events

Complex events have their own category. Their definition contains a comma separated list of
elementary events in Type column. Complex events in this version may not be directly sent or
received by elementary tasks. They may be only used for bundling together several related events

“*.*.(MON-FRI) 17:00” once per workday at 5PM

“*.*.(MON-FRI) (09:00-17:00)” once per minute during the business day

“*.(04-09).(TUE-SUN)
(09:00,10:00,11:00,12:00,13:00,14:00,15:00,16:00)”

once per hour, in summer daytime, except Mondays

“1996.*.04” on the fourth of every month in 1996 at 00:00

“*.(03-08)” on the first of the specified months

“*.*.* *:15” quarter past every hour

Table 4-1: Time specification examples
Event table 29

•
•
•
•
•

30

•
•
•
•
•

having the same route in some high level BP diagrams. They must be finally refined into
elementary events at some BP level (using syntax defined in 6.2.12). No nesting of complex
events is permitted.

Transfer time and persistence is ignored for complex events. Timers may not be used as elements
of complex events.

4.4 The semantic aspects of event behavior

All events are created by tasks or timers and sent to their destination queues at other tasks. Then
they are taken from these queues and used for triggering those destination tasks (they are
“consumed”).

If considered in detail, there are two types of event behavior in queues:

• lasting semantics

• enabling semantics.

For any category except timer, the “lasting” semantics is assumed. If the persistence column is
empty, it means “lasting forever”, namely the event enters the target queue and remains there
until it is consumed by the task; there is no difference whether the event alone triggers the task
or several ANDed events trigger the task. Lasting semantics is used also for control flows not
definable in ET. “Enabling semantics” is never used for non-timer events.

If the persistence column contains a duration constant, it means “lasting for this duration”, i.e.,
after the expiration of this period the event vanishes from the queue.

On the contrary, for timers the “enabling semantics” always is assumed. An empty persistence
column for timers means enabling (“0s”) semantics. Explicit duration value d in this column
means enabling (d) for timers. The “enabling” semantics is the following. First, such an event
persists in the queue only for the specified time interval, after that it simply vanishes from the
queue. In particular, enabling (“0s”) (which is default for timers) means that event must be used
at the same system time moment when it appears in the queue (a lot of actions may occur at one
system time moment, e.g., several task instances may start). Such an event vanishes from queue
when the system time is advanced.

Second, enabling semantics is different from a consumption point of view. There is no
difference when the event alone triggers a task - it is immediately consumed from the queue after
the triggering. However, when an enabling event triggers a task in an ANDed combination, with
one or more lasting events, the enabling event remains in the queue (the lasting ones are
consumed). Thus an enabling event can “pair” with several sets of lasting events while it persists
in queue. For example, if a task is triggered by e AND t, where e is a lasting event and t a timer
with default persistence, then one instance of t pairs with all instances of e which are present in
the queue when t arrives, and the corresponding number of task instances are started (provided
Chapter 4

that there is sufficient number of performers available). Only the expiration of the time interval
deletes the enabling event from queue in such a situation. Sometimes in rare instances, several
enabling events are ANDed (i.e. two timer events, one an interval the second a frequency are
used together), but note that the enabling events are all consumed at triggering in this case.

The consumption of timers depends on the exact set of events used for this particular triggering.
When there are ORs in the triggering condition involving timers, such as the expression (tim1
AND e1) OR tim2 where tim1 and tim2 both are timers, this should be taken into account (tim2
is consumed when it triggers but tim1 is not).

Normally there is either zero or one timer in an input queue. However, if a persistence interval
exceeds repetition period (this may happen for random intervals) there may be more than one
timer in the corresponding queue. From the enabling point of view it makes no difference how
many timers are in the queue (if there is at least one), their consuming is as for other events.
Event table 31

•
•
•
•
•

32

•
•
•
•
•

Chapter 4

5

Chapter 5
Task Details Diagram

5.1 General form and role of TD diagram

Any task used somewhere in a business model has a Task Details diagram (TD).TD diagram
describes all properties of a task and its possible links to other tasks (its neighborhood).

Formally, the TD diagram is the definition of the task. All properties defined there apply to all
occurrences of this task in any of the business process diagrams. The neighborhood description
of a task in its TD is made up from all of its occurrences in BP diagrams.

A task is called elementary if it has no further refinement via BP diagram, and a task is called
complex if it has at least one refinement via BP. For an elementary task all of its properties are
defined in its TD. Properties of a complex task are to a great deal redefined by its refinement.
Complex tasks actually correspond to transactions (see Chapter 7).

From the functionality point of view there are transformation tasks and decision tasks.
Transformation tasks have only one possible continuation, while decision tasks have several
possible continuations from which one or more is selected. Decision tasks are distinguished by
the presence of decision symbols. Transformation and decision tasks are not subtypes of TD,
these are just subclasses of the same diagram type.

The properties of a task (its triggering condition, performer expression, attributes, etc.) are
described in the central symbol of a TD diagram - in the task body. For decision tasks the body
is followed by decision symbols.

The neighborhood description consists of input events and output events, represented by
arrows. Input events go from referenced task symbols (or referenced timer symbols) to the task
body. Output events go from the body (for transformation tasks) or from the decision symbols
(for decision tasks) to referenced task symbols.

Referenced task symbols correspond to the neighbors of the task as they appear in a BP.
Therefore each referenced task symbol contains the name of the corresponding neighbor. On
the other hand, referenced task symbols appear the same way once more in the refinement BP
of this task. Thus these symbols provide additional linkage between two adjacent levels of BP
33

•
•
•
•
•

34

•
•
•
•
•

diagrams (i.e., they improve linkage readability and resolve ambiguities of linkage based solely
on event names). Referenced task symbols are used in representing both incoming and outgoing
links of a task.

Formally the TD diagram consists of:

• body (always one);

• decisions symbols (if the task is a decision task);

• arrows for input/output events with event names assigned to them;

• referenced task (timer) symbols associated with input/output arrows, containing task names
(or name lists);

• textual detailing which may be placed on input/output event arrows beside their names to
provide additional details on event receiving/sending;

• data store symbols representing both informal or formal data stores or material stores.
Symbols are linked to body via possibly named access paths which represent data flows. The
characteristics of these flows are specified in the AT table associated to the task.

• data object symbols linked to body via the same access paths

Fig 5.1 shows an example of a TD (a decision task in this case):

Figure 5-1: Example of TD diagram

Rem1 Rem2 Rem3

RemB RemE RemF

D_object

Y N C

Task : Car_Rental
Triggering condition :
AND
Performer :
Perf1 AND Res1

RemA RemC RemD

D_store_1

ev2
ev1

f g e

e

f

Chapter 5

There are some formal rules for TD diagram structure:

• for decision tasks, output events may start only from decision symbols, but not from the
body

• each referenced task (or referenced timer) symbol is associated with only one (input or
output) event arrow

• the referenced timer symbol may be associated only with input event arrow.

Though the TD is the formal definition of a task, often only BP diagrams are manually built by
the user and TD diagrams are generated automatically by GRADE editors (see Section 6.6 and
GRADE on-line help). If only those task properties are used which are visible in the BP diagram,
then TD diagrams need no manual modification and there is complete consistence between TD
and BP. However, if a TD diagram (its body or decisions) are in fact manually updated, then it
becomes the primary definition of task properties, and not the BP diagram.

In the next sections, all elements of the TD will be explained in detail.

5.2 Referenced task symbols

The referenced task symbol in a TD diagram represents a neighbor of the given task when one
or more occurrences of this task appear in some BP. There are three kinds of referenced symbols:

The three kinds of referenced symbols represent neighbors, either internal or external tasks
respectively, or incoming timers. Referenced internal and external tasks may represent both
incoming or outgoing links of a task, referenced timer may be only incoming. The referenced
internal and external task symbols are distinguished only for better readability, from the formal
semantics point of view they are equal.

<task_name>

<task_name>

referenced internal task

referenced external task

referenced timer
Task Details Diagram 35

•
•
•
•
•

36

•
•
•
•
•

In general, both for internal and external referenced tasks, a name list (comma separated) may
be used instead of single name:

For referenced external task the name list may also be empty (but not for an internal one). Such
an empty list corresponds to a neighbor which is an unnamed external task.

The main association between a task’s definition in its TD and its occurrence in a BP (and
between TD and refinement BP) is still via event names. Referenced task symbols with their
names only help to detail this association.

Referenced tasks associated with incoming events are also called incoming referenced tasks, and
the same applies to outgoing ones.

Normally there are as many incoming referenced tasks (of the appropriate kind) and respective
incoming event arrows in a TD as there are different events entering this task in a BP. If in a BP,
several equally named events enter the task from different tasks, then the names of all of these
neighbor tasks are grouped together in one referenced task symbol, associated with the given
incoming event. All incoming control flows normally also are represented by one referenced task
symbol with an appropriate name list, associated with the unnamed input.

The situation is similar for outgoing events. Different events leaving the task (or one of the
decisions in case of a decision task) correspond to an equal number of outgoing referenced tasks.
If several equally named events leave the same source, their destination names are placed in one
referenced task symbol.

This, in general, is the default appearance of a TD when automatically created by GRADE
editors. However, it makes no difference whether referenced task names are grouped in one list
or they are placed separately in several referenced task symbols. Formally, when a name list is
used in a referenced task, it is completely equivalent to several referenced tasks connected to the
same partner.

< name_list>
Chapter 5

Namely,

It is permitted to combine in one referenced task’s name list, names of both internal and external
tasks.

But the default editor principle in the case of many equally named events is to place internal
neighbor task names in one internal referenced task and external neighbor task names in another
external referenced task. From the formal syntax point of view, grouping in name lists is
completely irrelevant.

There is a mandatory requirement, that if there are several events with the same name (in
particular, control flows) then the name lists within the corresponding referenced tasks must
have no common elements. External referenced tasks may also have an empty name list if the
relevant neighbor is an unnamed external task (but this “empty name” may be simply ignored,
if the event comes/goes also from another named task). If a neighbor of a task in a BP already is
a referenced task, it is represented in the TD by the same referenced symbol (the name (or name
list) is also retained).

Each incoming timer is represented by a separate referenced timer symbol.

If a task has several occurrences (in one or several BP diagrams), the referenced task name lists
are summed up from all occurrences.

Referenced task names in TDs are semantically insignificant for incoming named events when
a task is elementary. In any case there is one queue for a named event (but there may be also no
queue at all for this event at a given task occurrence when there are no connections, see more in
6.5). For control flows referenced names have some significance since there is potentially one
queue for each different referenced task name.

But for outgoing events, the referenced names are always the basis for event routing (see 6.5).

Task :Task_1

Task :Task_1

A,B

A,B

Task :Task_1

Task :Task_1

B

A B

A

e

e e

e e

e
is equivalent to

is equivalent to
Task Details Diagram 37

•
•
•
•
•

38

•
•
•
•
•

In any case, there should be no superfluous referenced task names in any TD, except the natural
name lists appearing in case of several occurrences of the task. Superfluous referenced task names
may cause problems for simulation, see Section 6.6. There are special GRADE editor facilities
for removing superfluous referenced task names (i.e., those not used in any BPs).

On the other hand, all neighbor names from any of the task’s occurrences must appear in a
relevant referenced task symbol.

The special case is the TD for primary (i.e. top level) tasks. Though there is no BP above, such
a TD may contain a referenced task symbol naming another primary task. This option is used
to ensure the exchange of events between primary tasks (see more in Section 8.1).

5.3 General contents of the task body

The task body is the main element of the TD, where all task properties are described, in separate
sections.

The following sections are available

• Task name

• Task type

• Alternative name

• Triggering condition

• Performer expression

• Informal description

• Objectives

• Constraints

• Execution mode

• Priority

• Duration

• Max instances

• Attributes

• Alternatives

• Assignments

Figure 5-2 shows an example of a task body where all sections are present. All sections are
optional, and there may be a task, where only its name is present in its body. This name is always
the task name itself.
Chapter 5

The most significant (and most used) sections from the behavior description point of view are
triggering conditions, duration and performer expression.

These sections are described as the first ones.

Figure 5-2: Task body in TD

When a task appears in a BP as an occurrence, the following sections of the body may also be
present there:

• task name

• triggering condition

• performer expression

• task duration specification.

• alternative name

• assignments

In a correct model, any task information included in a BP must contain the same information
as the corresponding section in this task’s TD, or be empty. GRADE editors provide support in
maintaining this data consistency since sections from the BP are automatically transferred to

Task: Task_name
Type: Type_name
Triggering condition:
ev1 AND ev2
Performer:
(Perf1 AND Res1) OR
(Perf2 AND Perf3 AND Res2)
Description:
Any text
Objectives:
For something
Constraints:
This must be
Execution mode: Manual
Duration: "3h"
Max instances: 7
Priority: 0
Attributes:
Redo_probability: 30;
Personnel_costs: 23.5*ev2.costs;
Process_costs: COST*ev1.length
Alternatives:
A1: PROBABILITY=70 %
A2: PROBABILITY=30 %

Alternative_name

Var1:= expr1;
Var2:= expr2;
Task Details Diagram 39

•
•
•
•
•

40

•
•
•
•
•

TD when a BP is modified. If the information in the TD contradicts the corresponding section
in the BP (usually the result of a manual modification to the TD by the user), then in simulation
the TD information is used.

In addition, tasks in a BP may contain sections which never appear in a TD

• occurrence description (comment)

• transaction control options (START, NOSTART, END) (see more in Section 7)

In a TD, the informal description already plays the role of a comment, therefore there is no
special comment section.

The following sections of the TD are informal in character:

• informal description

• objectives

• constraints

• execution mode

5.4 Triggering condition

Triggering condition describes which events or event combinations must have arrived via incoming
event arrows from other tasks and, consequently, must be in the event queues of a task in order for
this task to start. When the task actually starts, the events which have triggered the task are removed
from the queues. This is known as the consuming of an event combination.

Triggering condition is significant only for elementary tasks.

5.4.1 Simple cases

The simplest form of triggering condition is that consisting of just one keyword AND or OR.

AND means ANDing together all possible input events (which are present in the TD). Namely,
one instance of each distinct input event is required. If several equally named event arrows (i.e.,
from different neighbors) enter a task, only one instance of such event is required. OR requires
any one of the input events to be present. Only this one event is consumed when the task starts.

The Triggering condition may be completely absent as well. In this case the default simple AND
is assumed.

If only one input event enters the task, that event name also may be used as the triggering
condition. This again means the same thing - one instance of the event must be present.
Chapter 5

5.4.2 Syntax in general

The general form for the triggering condition is a special Boolean expression using incoming
event names. This expression may be:

• a standard Boolean expression, using AND (high priority), OR (low priority) and
parentheses from incoming event names;

• special_AND_expression;

• OR_expression built from special_AND_expressions and standard Boolean expressions.

A special_AND_expression is an and_list associated with one or more additional statements
such as WHERE, AND ALL, <integer> event_name, etc. Formally, the special AND expression
is one of:

• (and_list WHERE condition)

• (and_list AND ALL event_name)

• (and_list AND ALL event_name WHERE condition)

• (<integer>event_name)

• (and_list AND <integer> event_name)

The and_list may be:

• a single event name

• two or more ANDed single event names.

The “&” character may be used instead of keyword AND, and the “|” character instead of OR.

A special AND expression must be enclosed in parenthesis, if it is ORed with another such
expression. If it is used alone, parenthesis may be omitted.

In other words, any “special element” (WHERE, ALL, grouping integer, optional event) may
appear only inside an ANDed (and bracketed) subexpression, which may only be ORed to the
other parts of the triggering condition expression. Thus the special elements may appear only
inside one level of brackets (which are mandatory when there are other OR parts), and there
may be no ORs inside these brackets.

NOT operator is not used in GRAPES-BM.

If and_list in a special_AND_expression is followed by yet another event (connected via AND
ALL or AND<integer> options), then the name of this additional event may not appear in the
and_list. For example, e1 AND <2>e1 is invalid, use <3>e1 instead.

The general form for triggering conditions can be summed up as follows:

triggering_condition::= and_term {OR and_term}*
and_term::= stand_and_term | (special_and_term)
stand_and_term::= stand_factor {AND stand_factor}*
Task Details Diagram 41

•
•
•
•
•

42

•
•
•
•
•

Examples of valid triggering conditions

e1 AND e2

e1 & e2

e1 OR e2

e1 | e2

e1 AND (e2 OR e3 OR e4) AND e5

e1 AND e2 OR e1 AND e3

e1 AND ALL e2

<3>e1

e1 AND <3>e3

e1 AND e2 WHERE e1.f1=e2.f1

(e1 AND ALL e2) OR (e1 AND <3>e3) OR e5

(e1 AND e2 WHERE e1.f1=e2.f1) OR (e1 AND ALL e3) OR (e1 AND (e4 OR e5))

(e1 AND ALL e2)

e1 AND e2 [AND e3]

5.4.3 Semantics of triggering condition

If standard Boolean expressions are used, they have their intuitive meaning. Any minimal group of
events, which satisfy this Boolean expression is used for triggering. Subexpression e AND e also
requires only one instance of e to be present, which may have arrived from any of the sources (and
only one instance is consumed). Similarly, e OR e is the same as e. If two instances of an event are
necessary for a task to trigger, notation <2>e must be used.

The special AND expressions are used for group or selective triggering. Thus

event1 AND ALL event2

is triggered, when there is one event1 and one or more event2 present in queues of the task.
Then all instances of event2 present in the queue are consumed together with one instance of
event1.

Integer qualifier (which must be a constant) is used to define fixed size “packaging” of events,
e.g.,

e1 AND <5> e2

stand_factor::= event_name| (stand_expr)
stand_expr::= stand_and_term {OR stand_and_term}*
special_and_term::= and_list WHERE bool_expr |

and_list AND ALL event_name |
and_list AND ALL event_name WHERE bool_expr |
and_list AND <integer_const> event_name |
<integer_const>event_name |
and_list {[AND event_name]}*[AND and_list]

and_list::= event_name {AND event_name}*
Chapter 5

requires one e1 and five e2’s to be present in queue, and they are all consumed at triggering.

If the and_list contains more than one element, just one instance of each is taken together with
the required number of instances of the last specified event. ALL and integer grouping may be
applied also to timers (in the role of the last event), but this is not a frequently used construction.

The expression <5>e2 alone is also considered to be a special AND expression. It is used to
specify just a package of events e2 as the triggering condition. <1>e1 is considered to be identical
to simply e1, and, consequently not a group triggering expression.

The WHERE condition is a Boolean expression operating on incoming event fields and task
attributes. Only the event (or events) from the and_list (beside which the WHERE condition
appears) may be referenced. The condition itself is a normal Boolean expression containing
relational operators on arguments, ANDs and ORs. The semantics is that only the event (or
event groups) satisfying the condition is used in triggering. Non-matching event instances
remain in queue. For example,

ev1 AND ev2 WHERE ev1.x1=ev2.x2

says that only those event pairs of ev1 and ev2, where the corresponding fields match, are taken
from queues and consumed for triggering. Elementary fields from any level (using the
appropriate qualification) may be referenced in WHERE condition.

Any task attributes may be referenced in the condition, and their values are specially computed
at that moment. If the value happens to be undefined (NULL), any comparison of it to any
event field returns the answer false. Global variables from VT may also be referenced in
WHERE condition (see more in 14.3).

Warning. If one of the attributes used in WHERE is based upon a random function, the
attributes value used by WHERE may differ from the “actual” value (used in task statistics).

When ALL is combined with WHERE, only those instances of ALL-event which satisfy the
WHERE condition, together with appropriate singular event instances for and_list make a
“package” of events, which triggers a task instance and is consumed from the queues. Example:

e1 AND e3 AND ALL ev2 WHERE e1.x=e3.x AND e1.x=ev2.x

Here at least one matching ev2 must be in the package. All non-matching ev2 remain in the
queue.

A special notation like

e1 [AND e2]

where the AND-symbol together the event name following it is enclosed in square brackets, may
be used as the and_list forming the special AND expression. This notation means that the
bracketed event is not mandatory for triggering, but when an instance of this event is present,
it does take part in the triggering (and therefore is removed from the queue). Remember that if
an event arrow enters a task symbol but the event is not present in the triggering condition, then
Task Details Diagram 43

•
•
•
•
•

44

•
•
•
•
•

instances of this event simply remain laying in the queue (except in the case where the triggering
condition is completely absent). Square brackets may not be combined with the other special
expression facilities (WHERE etc.). There may be more than one bracketed event, e.g.

e1[AND e2][AND e3]

If several of the ORed AND expressions are true simultaneously, the first of them (from left to
right) is actually used for triggering. More precisely, any standard Boolean expression which is
a top-level OR-part of the triggering condition, is internally converted to its disjunctive normal
form. As far as possible, the order of events in the original source expression is retained. Thus
after this transformation any complicated triggering condition is an OR-expression, where each
AND-term is either a simple ANDed list of events, or a special AND-expression (i.e., one
containing ALL, WHERE, etc.). If a triggering condition is already in the disjunctive normal
form, it is not transformed. During execution, each AND-term (from left to right) is checked,
to test whether all events in this term are present (at least one instance). For special AND-
expressions the additional requirements also are checked. The first term thus found to be true,
is used as the actual triggering set.

5.4.4 Control flows in triggering and semantics for occurrences

Nameless events represent pure control flow. They never appear explicitly in the triggering
condition. They either all are ANDed to the explicit triggering condition (if the triggering
condition is a simple AND or any more complex one), or all are ORed (if the triggering
condition is a simple OR).

If more than one control flow enters a task, a separate queue is assigned to each of them. More
precisely, a potential input queue is assigned to each referenced task name associated to an
incoming control flow in a TD (regardless whether they appear in one referenced task symbol
as a name list or in several).

But there is a general convention, that in every occurrence of a task only those input queues are
built which potentially may receive an event (or control flow) in this occurrence according to
connection rules (see 6.5). The simple AND requires that an instance of event from each
existing queue must be present (and is consumed).

To sum up, this rule implies the most natural semantics, that in each occurrence of several
ANDed (by default) control flows only all those really entering this occurrence are required for
the task to start.

In OR cases, the presence of one of the control flows is sufficient for triggering.

The other consequence of this convention on queues and simple AND triggering, is that one
occurrence of such a task may have, e.g., e1, e2, e3 as incoming events and the other only e1,
e2 and both will be normally triggered (TD will have e1, e2, e3 as incoming events and up to
five referenced task symbols in this case).
Chapter 5

Complex events may not be used for direct triggering of tasks, they must be refined first. They
also may not be used for implicit triggering of elementary tasks (i.e. they are not allowed to enter
an elementary task).

5.5 PERFORMER expression

The PERFORMER expression (see PERFORMER section in Fig. 5-2) sets the criteria by which
a performer or group of performers is to be selected from the ORG diagram to execute the given
task. These performers must be available before the task can start. Performers are taken from the
ORG diagram of the business model.

5.5.1 Syntax of the performer expression

Any element of the ORG diagram (unit, position, resource) may be referenced as a performer in the
performer expression. In the simplest case, the performer expression is simply one of the available
performer names, e.g. secretary.

The general form of the performer expression is a Boolean expression built from
performer_elements using AND, OR operators and parenthesis. The “&” and “|” characters
may be used instead of keywords as well.

In the simplest case the performer_element is a organizational unit name, position name or
resource name from ORG diagram. If a name is not unique diagram-wide, then it should be
qualified by including corresponding higher level names from the ORG tree, e.g.,

SE_laboratory.Programmer

SE_laboratory.Computer.

If the performer is a multiple object (multiple unit, multiple position, multiple resource), the
number of performers (resources)actually necessary may be specified (before the qualified
name), e.g.,

<3> SE_laboratory.Programmer

<3> SE_laboratory.Computer

If no number is specified, one instance from the multiple performers is assumed.

The number of performers may be used also if there are several equally named position elements
at the same level (from this point of view it is the same as if there were one multiple position
with the appropriate number).

The performer expression will often also contain the specification of a necessary competence list
(after the keyword WITH), e.g.,

<3> SE_laboratory.Programmer WITH COMPETENCE = Pascal, Cplus
Task Details Diagram 45

•
•
•
•
•

46

•
•
•
•
•

AND-semantics are assumed for the competence list, i.e. both competencies are required here
simultaneously.

If a performer or a resource is occupied by the given task only partly, e.g., only at 70% level,
then it is specified as follows

<3>SE_laboratory.Programmer WITH COMPETENCE=Pascal FOR 70%

The keyword ANY may also be used instead of position in a performer expression, e.g.,

SE_laboratory.ANY WITH COMPETENCE=Pascal

Some more examples of performer expressions follow:

(<2>SE_programmer AND SE_computer) OR(<2>Artif_int_lab.Programmer
WITH COMPETENCE=OPS5)

(perf1 AND res1) OR (perf2 AND res2).

The syntax of the performer expression is the following:

performer_expression::=perf_and_term {OR perf_and_term}*

perf_and_term::=perf_factor {AND perf_factor}*

perf_factor::=performer_element | (performer_expression)

The general syntax of performer_element then is the following:

performer_element::=unit_perf | posit_perf | res_perf

unit_perf::= [num] {unit_name.}* unit_name[comp]
posit_perf::=[num] { unit_name.}* posit[.employee_name][comp][percent]
res_perf::=[num] { unit_name.}* [posit_name.]{resource_name.}*
resource_name[comp][percent]

comp::=WITH COMPETENCE = competence_list

posit::= position_name | ANY

percent::= FOR integer_constant %

num::= <integer_constant>

competence_list::=competence_name{,competence_name}*

In general, the referenced names should be in accordance with the ORG diagram. Unique
names at any level may be unqualified. Non-unique names must have necessary qualifications
(unit_names, composite resource names) which make them unique.

However, it is permitted also to use “incomplete” specifications, i.e., when there are equally
named performers in several places of ORG diagram, then by omitting some of the highest level
qualifications, we can have access to all these places, e.g., to programmers from several
departments. It is not permitted to omit “middle” qualifiers, each element must match to a tree
fragment.
Chapter 5

If the position is qualified by employee name, only the specified one is seized. This facility makes
sense, if there are several similar positions distinguished only by employee names.

ANY position may be the lowest item in a performer element or may be followed only by WITH
COMPETENCE specified. No resource or employee name may follow ANY. On the other
hand, ANY may be preceded by unit specification, or used alone. When used with a unit
specification, it means any position directly under this unit, while when used as a single keyword
it means any position in the entire ORG diagram.

5.5.2 Semantics of the performer expression

When a compound organizational unit is specified as a performer, this includes all positions and
resources from the specified unit in the performer expression. When the unit is seized none of the
components of the unit are available for another task. Similarly, a composite resource means all its
components. Position and elementary resources mean just the specified objects. When a manager
position is placed above the unit or department it manages via the manages relationship, seizing the
manager leaves all components of the unit available.

x AND x is the same as <2>x. Therefore dept1 AND dept1.secretary makes no sense (the first
element already requires the whole dept1). The number of required performers should not
exceed the number of available ones. If no required number is specified, 1 is implied.

The FOR option does not affect the seizure of a performer or a resource - it is always seized for
100%. The cost is also not affected. The only effect of the FOR option is within performer
statistics, where productive utilization is computed accordingly.

Performer availability periods are taken into account only when starting a task. If the task
execution period runs over into an unavailability period for a performer, the performer
completes the task in accordance with its duration.

In fact, the availability of specified performers acts as part of the triggering condition. If the
triggering condition is true for some event group in a task’s queues but none of the specified
performer combinations is available, no triggering occurs, and the events remain in queue.
Certainly, events with limited persistence, like timers, (see Section 4) may vanish from queue
while waiting for performers, so these event instances may trigger no task at all.

5.6 Other elements of task body

Now let us describe the other elements of task body. Fig. 5.2 shows an example of a complete
body.

Triggering conditions and performer sections were already described above.
Task Details Diagram 47

•
•
•
•
•

48

•
•
•
•
•

Section TYPE specifies the type name of the task. If no user defined type is used, the section is
empty. The type specifies which attribute table is used for task attributes. Untyped tasks have
no attributes, except the predefined ones - DURATION and COST.

Alternative name is an additional qualifier of the task. For example, it may be a task’s
registration no. in the company’s library or catalogue of tasks, or the internal code assigned to
an IT-specific task by an IT system designer. The only role of the alternative name is to make
the identification of individual tasks easier. The alternative name is ignored in simulation. An
alternative name may be an arbitrary string. Sometimes alternative names are also called short
names (especially, if they are of the form 2, 2.3, 2.2.7, etc.).

The INFORMAL DESCRIPTION, OBJECTIVES and CONSTRAINTS sections contain
any informal text.

EXECUTION MODE section may contain one of the keywords: MANUAL, AUTOMATED,
INTERACTIVE.

PRIORITY section has the syntax

PRIORITY : integer_const

with zero as the default value (the highest priority = 0, so the greater the constant, the lower is
the priority). Priority governs the competitions of tasks for performers. Explicit priority greater
than zero must be defined for “background” tasks, thus allowing normal tasks to seize
performers as first.

The precise semantics of priority.

Let us assume that several tasks are ready to trigger (i.e., there is at least one triggering event set
in each task’s queues) but they are not triggered because no performer (common to all of them)
is available. When a required performer becomes available, then among tasks which could now
be started, the one with highest priority is selected to start.

If tasks compete for different performers, their relative priority has no effect on their starting
order (i.e., all tasks are started as soon as possible). If there are ORed performers, for each
performer set becoming available there is an independent competition.

A task being executed is never interrupted by a higher priority task (non-preemptive
scheduling).

There are two predefined attributes, DURATION (of type duration), COST (of type float) for
each task.

The DURATION attribute is described in the DURATION section of the task description.
COST has no explicit description in TD. Instead, the value of this attribute is computed
dynamically, using DURATION from tasks being performed and the COST PER HOUR
attributes of the performer(s) selected to perform this task from the ORG chart (namely, the
Chapter 5

actual duration is transformed to hour units and the obtained float value is multiplied by the
appropriate cost per hour value). The COST attribute may be referenced in other formulas,
however.

Cost per hour is summed for all performers used. Efficiency (which affects the duration) is also
implicitly taken into account.

If a compound unit is defined as a performer (but not the elements of it), then the COST PER
HOUR for the whole unit is used (if it is present), otherwise the sum of the costs of a unit’s
direct constituents is used.

The DURATION section may contain a proper duration constant, a named constant from SP,
a random duration function, or a duration type expression, containing as arguments the above
mentioned values, and in addition, attributes of incoming events and task attributes.

Restriction: only attributes of events which are always present may be referenced, an execution
error message appears when missing event is referenced.

If a group triggered event is referenced, then the first instance of it is taken. Any task attribute
may be used in a duration expression, and the derived values are specially computed at that
moment. If the expression results in NULL value, zero duration is assumed.

Warning. If an attribute with a random value is involved, the value may be different from the
final value of the attribute.

Examples:

“3h”

“2d:10h”

EXPONENTIAL(“2h”)*order.quantity

line.duration*letter.length

ATTRIBUTES section may contain some of the attributes for the given task type. The
attributes present in the corresponding ATR but not included in ATTRIBUTES section retain
their definitions (default value or formula, with formula having priority), if such are provided
in ATRs. Those without definition have undefined (NULL) value. No assignments are
permitted to string attributes in this section, if the model is to be used for simulation.

The presence of attributes in the ATTRIBUTES section completely redefines their value by the
provided expression (which may be a constant or a proper formula). If a new formula is defined
here, there are wider possibilities for its arguments. In that case input event fields may also be
used as arguments. They are referenced as event.field (or event.field1.field2.field3, if the record is
nested, the actually referenced value must always be elementary). It must be ensured that the
event type has such a record field, and that the task is actually triggered by such an event
(otherwise NULL value appears together with a warning at runtime). When an event has an
elementary type, just the event name is used for referencing its value. Predefined task attributes
Task Details Diagram 49

•
•
•
•
•

50

•
•
•
•
•

may also be used in formulas. Each attribute setting is terminated by “;” character. After the last
attribute, the “;” character may be optionally inserted. Thus attribute setting is a sort of
assignment statement.

If an event e2 appears in a “group triggering form”, i.e., e1 AND ALL e2 or e1 AND <10> e2,
then SUM, MAX, MIN, AVG operations may be applied to fields of e2, e.g., attr5:
SUM(e2.x1). If an ordinary arithmetic operator is applied to such a group event, the first
instance is taken.

Random values may be used freely in attribute formulas. See more on expressions in section 11.

Each possible attribute from the corresponding ATR table may be redefined only once in the
ATTRIBUTES section. The order in which the attributes are redefined in the section has no
semantic meaning.

The retained attribute definitions from the ATR table and the redefined ones from the attributes
section in tasks together are sorted in an order where an attribute referencing another attributes
in its final formula is evaluated after the referenced ones. If a circular reference is found, an error
message is generated (i.e., such an ordering is forbidden). The attributes in a TD are evaluated
during simulation in the order defined by this sorting.

A special case is attributes of transactions (non-elementary) tasks, which are evaluated at the
corresponding transaction end (see Section 7). Besides other attributes of the task, formulas in
transactions may contain also attributes of other (elementary) tasks inside vertical operations
(SUM, MAX, MIN, AVG). Here “vertically processed” attributes are referenced purely by their
names. Any arithmetic or duration type attribute from any ATR table formally may be
referenced in a vertical operation. If several ATR tables contain equally named attributes, their
types must also be equal, if these attributes are being “vertically processed” in transaction
attribute formulas. Formulas of transactions may not contain event fields. Any task instance
having the referenced attribute and which belongs to the transaction instance is taken into
account. See more on it in Section 7.4.

MAX INSTANCES section defines the maximal allowed number of simultaneous instances of
the task. This is an additional absolute limit on the number of instances, besides the performer
selection expression together with the ORG diagram which also define a limit on the instance
number.

ALTERNATIVES section appears only when there are several alternative refinement BPs under
a complex task. It contains their names and probabilities. The GRADE tool supports automatic
extension of the alternative section when new alternatives are inserted directly in the model tree.
For top-level tasks, the Alternatives section is valid, when this top level task is “called” in some
BP (see 8.2).

In general, the Alternatives section effects only the routing into the given task (see 6.5). If
alternative BPs (including those at the top level) have autonomous activities inside (e.g. timer),
they all function in parallel, irrespective of probabilities.
Chapter 5

Percents may be absent from one or all alternatives in the section, and then 100/n is assumed
for each. It is not permissible to specify percentages for some and not for others.

Assignments section defines assignments to global variables performed by the task. It is
described in section 14.

Type, Attributes and Alternatives are the only sections of the task body which are operative on
complex tasks. All other sections are actually redefined by their refinements.

Any of the text sections can be individually made invisible in a task symbol. If you make some
textual elements invisible, they remain internally in place and regain their position when made
visible. Visibility does not affect the syntactic significance of a textual element.

5.7 Decisions

Decisions can have detailing which are statements placed inside the decision symbol. The
complete syntax of decisions is as follows:

decision_name

[formula]

[probability]

where

formula is Boolean expression | ELSE | ALWAYS

and probability is [number%] [EXCLUSIVE]

Formula and probability are optional. The formula may contain attributes (including derived
ones) and input event fields. Typically either a formula or probability is defined for all of a task’s
decisions, but the options may also be mixed. Decision names must be unique within one task,
and names must always be present.

The formula is any Boolean expression (see section 10) containing attributes and input event
fields. It should be reminded, that for “group-triggering” events the decision is taken once for
the whole group. Therefore only vertical operations on such event fields should be used. If a
group event is referenced without a vertical operation, the first instance is taken.

An example of decision:

Component_OK
comp.quality>0.95
Task Details Diagram 51

•
•
•
•
•

52

•
•
•
•
•

The decision formula may contain also special built-in function Is_triggered_by (event_name).
The function is true, if at least one event with the specified name was actually consumed during
the triggering of the current task instance. The function makes sense, only if there is a usage of
OR in the triggering condition (otherwise the function has a constant value).

In V.4.0, non-exclusive decision semantics are assumed, where several branches may be activated
simultaneously. This assumption is more general than the “exclusive” one.

First, let us explain the semantics for formulas. Each decision formula may be true or false
independently of others, and if the formula is true, the branch becomes active (i.e., the associated
outputs are sent). Two specific “formulas” defined by keywords ALWAYS and ELSE also may be used.
ALWAYS is just a syntactic equivalent for constantly true formulas, ELSE becomes true, if no other
decision branch is used. The standard exclusive style may be obtained, if formulas are mutually
exclusive.

Now, let us consider the probability based decisions. There will be two syntactic possibilities for the
probability specification

n%

or

n% EXCLUSIVE

where n is a non-negative integer or real constant, not exceeding 100.

If there is no EXCLUSIVE option for any of the decisions, then each of the decisions becomes
active irrespective of others, with its specified probability, e.g., a decision with 30% value
becomes active with probability 0.3. Decision with 100% value becomes active always.

If on the contrary, all decisions have EXCLUSIVE option specified, then the sum of percents
should be equal to 100 (if all EXCLUSIVE branches have the percent specified). If the sum
exceeds 100%, a warning is issued during analysis (and a branch may become unreachable
during simulation). Only one of the decisions may become active in an EXCLUSIVE case,
according to the percentage specified. If the sum is just 100%, just one decision always becomes
active. If the sum is less than 100%, then no decision becomes active with the probability (100
- sum)/100 (no analysis warning appears in this case).

These two cases are the normal ones for probability based decisions. However, EXCLUSIVE
and non-exclusive decisions may be freely mixed. In that case EXCLUSIVE decisions (which
again must have a sum not exceeding 100) form a group, which behaves independently of the
other (non-exclusive) decisions and activates zero or one decision. On the other hand, non-
exclusive decisions also function independently of exclusive ones, i.e., each decision is
independently activated with the specified probability.

ELSE decision may also be combined with probability decisions, with natural semantics (it is
used if none of the probability decisions is selected).

Only one ELSE decision is permitted per task - both in the formula and probability case.
Chapter 5

Yet another type of probability is possible by specifying simply the keyword

EXCLUSIVE,

without any percent specification. This option is used simply to specify the exclusive OR
relation between decisions (only one is possible). From the formal execution point of view,
100% (or less, if there are some EXCLUSIVE decisions with percentage specified) is divided
equally among them.

The EXCLUSIVE keyword is provided for better comprehension, since probability without a
percent and without EXCLUSIVE is the same as if nothing would be specified at all (and
EXCLUSIVE with equal chances is assumed in that case). For really non-exclusive decisions use
n% case.

If nothing is specified for any of task’s decisions (i.e. neither formula nor probability is selected),
a probability of (100/n)% (exclusive) is assumed for each. But then nothing must be specified
in any of a task’s decisions. It is not allowed to mix specified and unspecified decisions for one
task. All diagnostic messages on decision inconsistency inside a task are at warning level.

5.8 Output events

Output events can also have details, which are used if the data values carried by message events are
significant in the model.

The details may contain the SET option for setting values of output message fields and REPEAT
for increasing the quantity of outgoing events. The syntax for SET is

SET field1=expression;
field2=expression;...

Expression may contain task attributes and input event fields (as in the ATTRIBUTES section).
The same syntax for field referencing is used. The expression type must match the field type.
See more on expressions in Section 10. Each field setting is terminated by a semicolon. After the
last (or sole) field setting the semicolon is optional.

The REPEAT option has the following syntax:

REPEAT integer_expression

This option may be used to send several messages (with equal data) upon task completion, e.g.

SET field1=x+1;field2=event1.a; REPEAT event1.b.

In the case of events with elementary types, the form

SET VALUE=expr

is used. If the event has a nested record type, qualified field names are used:

field1.field11.field111=expression;

Only elementary fields may be on the left-hand-side of such an “assignment”, i.e. no record
assignment is permitted in this version.
Task Details Diagram 53

•
•
•
•
•

54

•
•
•
•
•

The repeat option may also be used alone:

REPEAT integer_expression.

SET and REPEAT options appear as text below the event name.

Remark. REPEAT may not be used as a record field name when the event has this record data
type.

There is a special convention on message passing through the task. If there is an incoming event
and outgoing event of the same name, the field values of the incoming event are passed without
changes to those of the outgoing event, without any explicit SET option for it. If there is a SET
option for such an event, only the event fields set explicitly in the option have the new values,
the other go unchanged.

For more complicated cases one more convention is assumed. If names of input and output
events are different, but they have the same data type (i.e., they reference the same type name
in ET), then a similar field value passing from input to output occurs. In the case that several
input events with the same record type together have triggered the task instance and the output
event also has the same type, one of these input events is taken for value passing.

Another special feature is multiple event passing, when the corresponding incoming event is
“group-triggered” i.e., in AND ALL or AND <n> connection, and there is an outgoing event
with the same name. In this case all instances of the incoming event are passed through the task.
SET option (if any) should reference only task attributes (or attributes of “single” events) in that
case (i.e., the updated fields are computed only once and are always the same for all instances).
Other outgoing events, as always, are generated in only one instance. Their field values should
depend on a group-triggered event only via vertical operations. If a group triggered event is
referenced without vertical operation, the first instance of it is taken.

If REPEAT is specified for multiple events, each instance is copied the specified number of
times.

SET and REPEAT may be used only for named events. Outgoing control flow always have only
one instance. Complex event may never be sent by elementary tasks.

If a task has a refinement BP, then the SET and REPEAT options for its outgoing events are
ignored during simulation. In order to be operative, these options must also appear in the
refinement.

If there is no SET option for an event and none of the default value transfer rules apply, the field
values of the output event are undefined (NULL).
Chapter 5

5.9 Input events

There is also one possibility provided for detailing input event, and is really used only for simulation.
Namely, for input events a spontaneous generation option is provided in the form

TIME (time_specification)

or

REPETITION(duration_expression)

may be used. Time_specification has the same syntax as for timer definition in ET (see Section
4.2). The same restrictions as in ET apply for the duration expression (except that arithmetic
expressions may not be used here). The time moments for spontaneous insertion of events in a
task’s input queue (in a BP) is defined as for timers.

This option is used to define system load generators “on the fly”, i.e. when timer-like behavior
is necessary, but an explicit timer for some reasons is undesirable. The feature may be used only
for named events (not control flows).

There are two preconditions for the spontaneous event generation to function. First, it functions
only, if the task is elementary. The typical usage of the feature is when we want an external task
to generate events to be processed by the system, without using an explicit timer symbol. For
complex tasks it is simply ignored. Second, there must be an incoming arrow with the given
event name in the BP (more precisely, there must be an incoming route for this event from some
task, see 6.5). Certainly, for the generator to function properly, the other end of this arrow
should start from a “dead” task - an external task without any stimulus (or external without
name) as a rule. However, it is not an error, if the other end starts from a “live” task, then the
event will appear both at the completion of the previous task and at the moments defined by
the spontaneous generator, i.e. the two event flows will mix together.

Details of input event are also shown in TD as a text below the event name.

5.10 External tasks

External tasks also have TD diagrams in version 4.0, which look the same way as those for
internal tasks. This means that external tasks also appear in the model tree, and they can also be
refined via BP. They may also have a type.

This means that there is no more formal syntactic or semantic difference between internal and
external tasks. Externality has no impact on simulation semantics definition or statistics.
Internal and external tasks are distinguished at the informal level, to improve model readability.

The sole special feature of external tasks, is that it is allowed to have unnamed external tasks in
BPs. Such external tasks do not appear in the model tree and have no TD. The use of such tasks
is for modeling only. From the simulation point of view they are considered as “dead” tasks.
Task Details Diagram 55

•
•
•
•
•

56

•
•
•
•
•

Events which would be sent to them are simply discarded since they have no input queues. They
never generate any events. However, these tasks are considered as existing from the routing point
of view (see 6.5). Thus, if a route comes from such an external unnamed task, the queue is built
at the other end of such route (to allow an appropriate spontaneous generator to make this route
“live”). Unnamed external tasks in BP may induce also external referenced tasks without names
in the refinements of their neighbors (in the TD and the refinement BP), which are used only
for routing.

Remember that some external tasks normally are workload generators of a system. These tasks
should be triggered spontaneously. This is described usually with a timer (using also random
values, as a rule) being the only triggering event of such a task.

It is recommended to specify external performers for external tasks, but formally there is no links
between these two kinds of externality.

5.11 Data stores and data objects

Data stores and data objects have only informal semantics in GRAPES-BM version 4.0.

Each data store has a name, and potentially, ER description:

ER_name must be the name of a visible ER model. If the ER_name is omitted, name equal to
data store name is assumed. But there may be no ER-specification at all since data store may be
completely informal (or contain even physical objects). The only reference to entity names is in
AT for this task, there entities from the ER model corresponding to the specified data store must
be used. The database name in AT should coincide with one of the data store names present in
the TD. For informal data stores, AT is not used and AT remains blank if only informal data
stores are present in a TD. Access paths are of three types (read, write, both) and may have
optional names. These names are completely informal. No consistency between access paths and
the AT of a TD is checked. The graphical form for access paths is the following:

Data stores are meant to represent persistent data existing in a business system. Typically such
objects are data bases, but also all kinds of archives belong to this category. Persistent stores of
physical objects (stores in warehouses etc.) should also be represented this way.

<store_name>
[<comment>]
[ER model <ER_name>]
[<alternative_name>]
Chapter 5

Task Access Table (AT) summarizes all access to data stores performed by the task. It has the
columns

• Entity

• Database

• Access rights

• Description

Each row describes an access to one entity. The entity must be from the ER model describing
the corresponding database. Access rights can have the values G, R, A, U, D or some
combinations of them. Since the AT is not utilized in simulation, no formal correctness check
is performed on it. Fig. 5.3 shows an example of an AT.

Data object symbol is the following

Data object name may be any, type, if specified, must be defined in a visible DD. Any type may
be referenced. Optionally named access paths to data object have the same form as for data
stores. No links to AT at all are used for data objects.

The informal use of data objects is a temporal data object created by one task and used by others,
it normally persists during one transaction. Sometimes this feature is used as a substitute for
event sending between two tasks, when a common data object is more natural. From the
programmer’s point of view data objects should be understood as global variables.

Both data stores and data objects are ignored in simulation. But if ER models are present in a
simulatable business model, then datatypes for all entities must also be defined in a DD
diagram. The data type name either coincides with the entity name or is explicitly referenced in
the entity.

Figure 5-3: Example of AT table

<data_object_name>
[<comment>]
[Type <data_type>]

Customer Orders R

Order Orders G

Product Suppliers G

Supplier Suppliers R

Database: Orders

Entity: Database: Access rights: Description:

Database: Suppliers

Entity: Database: Access rights: Description:
Task Details Diagram 57

•
•
•
•
•

58

•
•
•
•
•

Chapter 5

6

Chapter 6
Business Process Diagram

6.1 Role of BP diagrams

Business Process diagrams (BP) are the main facility of GRAPES-BM for describing business
system behavior. They are used to refine large tasks as chains of smaller tasks linked via events.
BP diagrams show how events generated by one task are passed to another one to trigger it in
turn. Timers are also represented in BP diagrams.

Business system refinement is started from primary tasks for which the highest level BP
diagrams are built. Tasks appearing in such a BP diagram (i.e. their BP diagrams) normally are
placed in the model tree directly subordinated to this top BP diagram. Some of these next level
tasks may have their refinement BP diagrams in turn, until the desired detailing of business
system behavior is described. In lower level BP diagrams the event linkage between adjacent BP
levels is also shown. This is done by referenced task symbols (and referenced timers) which
appeared already in TD diagrams. Figure 6-1 shows an example of BP diagram.
59

•
•
•
•
•

60

•
•
•
•
•

Figure 6-1: Example of BP diagram

6.2 Elements of BP diagrams

Task and decision symbols and event arrows in BP diagrams, besides their names, may have
several textual sections, identical to those present in the corresponding TD diagrams. In general,
these sections must either coincide with the corresponding sections of TD diagrams or be
empty. In case of discrepancies, the formal information for simulation is taken from the
corresponding TD section. There are also new textual elements both for tasks and arrows, which
can appear only in BP diagrams. For each of the elements the role of each text section will be
explained separately.

Any task symbol in a BP may also contain a WMF format picture.

Urgent
10 % EXCLUSIVE

Regular
90 % EXCLUSIVE

Register
Paper based

Prepare_AnswerPrepare_Answer

Register_Query
Secretary
"1m"

Send_query

Forward_to_Chief
&
Secretary
"2.5m"

Analyze_Query
Secretary
"3m"

Forward_Immediately
Secretary
"1m"At_5_PM

Query

Query

Query

Query

QueryQuery
Chapter 6

6.2.1 Internal task symbol

The internal task symbol is the main element of task refinement in BP diagram. The only
mandatory textual element is its name. The name links the task symbol in a BP to the formal
definition of the task in its TD. This definition is found according to visibility rules (see 1.2).
The appearance of a task symbol in a BP diagram is called a task occurrence. There may be more
than one occurrence of the same task in one BP (and in several BPs also).

Triggering condition, performer expression, duration and assignment are copies of the
corresponding sections of task definition TD. Alternatively, they may remain empty even when
these sections are present in the TD. No extraneous information should be added. Special care
should be taken in case of several occurrences of the same task. It makes no sense, e.g. to specify
performer p1 in one occurrence and performer p2 in the other, since both must be equal to the
performer specified in the performer selection expression in the TD diagram. In the event that
there is a discrepancy between BP and TD, it should be reminded, that formal information for
simulation is taken from TD. As far as possible, GRADE editors try to ensure consistency, by
automatically transferring nonempty textual sections from BP to TD. The syntax analyzer also
checks their contents to ensure consistency.

The formal syntax of triggering conditions, performer expressions and durations in BPs is
literally the same as in TDs and is to be found in sections 5.4, 5.5, 5.6 respectively. Assignment
to variables is described in section 14.2.

Description is an arbitrary comment for a task occurrence (and may be different for several
occurrences). It is not copied to a task’s TD. There the task’s informal description (common to
all task’s occurrences) plays this role.

Occurrence tag is a formal identifier used to distinguish several occurrences of the same task in
one BP. Its sole use is identification when viewing simulation results (directly in the simulator
or via the Trace Browser) and for defining show-boxes (Section 6.2.11).

Start, Nostart and End options are used for explicit transaction control related to the task
occurrence (see more in Section 7.3). They also never appear in a TD.

<task name>
[<description>]
[<triggering condition>]
[<performer expression>]
[<duration>]
[Start option]
[End option]

[Tag: <tag>]

[<alternative name>]

[<assignment>]

[Nostart option]
Business Process Diagram 61

•
•
•
•
•

62

•
•
•
•
•

Alternative name is the same additional qualifier of a task which appears in its TD. It is
common to all occurrences of a task.

Any task in a BP is either a transformation or a decision task. If it is a decision task, the task
symbol is connected to its decision symbols via simple lines.

Any of the texts in a task symbol in BP may be made visible or invisible via the Settings | Options
Menu in GRADE.

6.2.2 External task symbol

The external task symbol has the same formal properties as the internal task symbol and is
refined in the same way with a TD in the model. The difference between external and internal
task is completely informal, just to emphasize that some activity is performed outside the
framework of the business system under consideration.

There is only one additional feature for external tasks. External task may be unnamed. Then it
has no defining TD. From the formal execution point of view, it is called a “dead task”. It sends
no events, events to be sent to such task are simply discarded (i.e. not sent at all).

6.2.3 Timer symbol

Timer symbol defines an independent timer occurrence (determined by the timer event name
leaving it). This timer occurrence, determined by its definition in the ET, sends the
corresponding timer events.

<task name>
[<description>]
[<triggering condition>]
[<performer expression>]
[<duration>]
[Start option]
[End option]

[Tag: <tag>]

[<alternative name>]

[<assignment>]

[Nostart option]
Chapter 6

Caution. Do not confuse this symbol with a referenced timer, which has no autonomous
activity.

6.2.4 Referenced internal task symbol

where <task_name_list> ::= task_name{,task_name}*

A referenced task symbol in a BP diagram represents one or more neighbor tasks in a BP one
level above the current one, to or from which the given event has been sent or received
respectively, by the task whose refinement is the given BP. The name or name list in the
referenced tasks are equal to the mentioned neighbor name (or names).

More formally, referenced task symbols in a BP must coincide with (or be subset of) referenced
task symbols present in the TD diagram whose refinement is the given BP diagram. Events
coming from these referenced tasks (or going to them) must be the same in BP as in the TD
diagram.

According to their role, there are incoming and outgoing referenced task symbols in BP
diagram.

Incoming referenced tasks in BP correspond to incoming referenced tasks in TD diagram, and
the same applies to outgoing ones. From incoming referenced tasks in a BP, events go to internal
(or external) tasks of this BP, thus representing incoming links from the next upper level. And,
respectively, events go from internal tasks to outgoing referenced tasks, thus representing
outgoing links.

Actually, not the referenced task symbols themselves, but the pairs <referenced_name,
event_name> must be the same in the TD and its refinement BP. It is permitted to redistribute
name lists over several referenced task symbols associated with the same event name. Referenced
task symbol (together with its associated event) may be duplicated in a BP. Several event arrows
may leave a referenced task symbol. See more on formal consistency rules in Section 6.8.

It is forbidden to jump over levels. That means: it is forbidden to reference tasks other than
internal/external or already referenced tasks from the next upper level BP in referenced task
symbols.

The special case is top level refinement of primary tasks. In the same way as in TDs for primary
tasks, it is permitted in such BPs to reference another primary task in a referenced task symbol
(if such a reference is already present in the TD). See more on linking primary tasks in 8.1

<task_name_list>
[<comment>]
Business Process Diagram 63

•
•
•
•
•

64

•
•
•
•
•

6.2.5 Referenced external task symbol

Formally, this symbol has the same properties as the referenced internal task symbol. It is intended for
use when the upper level neighbor (or neighbors) of a task are external tasks. Then, naturally, the
corresponding referenced task symbol in TD is also an external one. It is not formally considered an
error, if externality one level above is ignored in referenced tasks of this BP, or internal and external
neighbor names are mixed in one symbol. By default, the editor distinguishes between internal and
external tasks when building automatically the referenced task symbols (in TDs and BPs). The only
syntactic feature is, that there may be a external referenced task symbol without any name. It
corresponds to an unnamed external upper level neighbor.

6.2.6 Referenced timer symbol

This symbol represents a timer one or more levels above the reference. It may be used if the TD
diagram whose refinement is the given BP already has such a symbol. It must be associated with the
same timer name as in the TD.

It must be remembered that the referenced timer symbol has no spontaneous activity, unless the
corresponding actual timer some level above it generates a timer event. The referenced timer
then only helps to redirect the timer event to the required task in a lower BP.

6.2.7 Decision symbol

<task_name_list>
[<comment>]

<name>
[<comment>]
[<formula>]
[<probability>]
[<End_option>]
Chapter 6

The decision symbol is always connected to a decision task in a BP. The only mandatory element
in a decision symbol is the decision name, which must consistent in both the BP and the task’s
TD.

Formula and probability have the same syntax as in TD (see 5.7):

formula is a Boolean expression,

probability is [number%][EXCLUSIVE]

Only one of them may be present. If formula or probability is present, then it must have the
same definition as in the corresponding TD (the same as for task symbol sections). In the case
of a discrepancy the formal value is always taken from the TD. GRADE editors help to maintain
the decision consistency between BP and TD, by transferring modified decision elements from
BP back to TD. The syntax analyzer also checks consistency between the BP and TD diagrams.
It is permitted to omit decision details in the BP if they are in the TD.

It is also permitted to have less decisions for a task in a BP than in TD (but not vice versa).

The End_option used for explicit transaction control is discussed in 7.3.

6.2.8 Data symbols

There are two of them:

Data store symbol

and data object symbol

Both symbols have informal semantics only and are not used in simulation. The syntax and
intended semantics is the same as for these symbols in TD (see 5.11).

It is recommended to maintain consistency between TD and BP for data symbols. GRADE
editors try to help in this by automatically transferring data symbols from BP to TD. But there
are no other consistency checks.

<store_name>
[<comment>]
[ER model <ER_name>]
[<alternative_name>]

<data_object_name>
[<comment>]
[Type <data_type>]
Business Process Diagram 65

•
•
•
•
•

66

•
•
•
•
•

6.2.9 Event arrow

The event arrow is an arrow linking two task symbols in BP diagram. It has the form:

[<event_name>][/<transfer_time>][/NOTID]

[set_option][repeat_option]

If the event arrow represents a named event or timer from the ET, the event name is mandatory.
An unnamed event arrow represents a control flow. For control flows no other syntactic
elements may be specified, i.e. the other elements are valid only if there is an event name.

If the transfer time is specified, it overrides the transfer time specified in ET. The same syntax is
used for transfer time definition as in the ET except that arithmetic expressions may not be used
here. Transfer time may be specified only for internal arrows, i.e., arrows connecting
internal/external tasks (but not referenced ones). If, however, transfer time is added to an
incoming or outgoing arrow it is simply ignored. If transfer time is not specified either in the
ET or in the BP, zero time is assumed. It is forbidden to specify a transfer time for timers.

NOTID option is used to prevent transaction TID transfer along with the event (see more on
it in section 7.3).

Set_option and repeat_option are identical to those options in a TD diagram at an output event
(see 5.8). If there are additional details associated with some outgoing event in a TD, the same
information may be placed at the corresponding event arrow in a BP. It is not allowed to place
different data in the BP, in formal processing only the data from TDs is used. GRADE editors
try to support the consistency by transferring output detailing from the BP to TDs. The
Set_option and repeat_option are ignored during simulation, if the task issuing the event arrow
has a refinement BP.

It is permitted to enclose the event name on a path in square brackets, e.g.,

[ev1]

This means that the event may also not be sent by the issuing task. This notation is just an
informal comment for modeling purposes. From the formal simulation semantics point of view
the event is always sent. A real optional event sending, e.g., with a given probability must be
specified explicitly by the decision for the issuing task.

Square brackets are not copied back from BP to TD (i.e., they only appear in the BP). This
notation may be combined also with additional texts on the arrow.

6.2.10 Access path

[<access_path_name>]
Chapter 6

Access paths connects task symbols (internal or external) to data store or data object symbols. The
path may have three forms depending on access type, in the same way as in TDs. The name is
optional. The element is completely informal in GRAPES-BM, and the semantics are the same as in
TDs (see 5.11). Data connections in BPs should be consistent with those in TD, but no formal
checks are performed.

6.2.11 Auxiliary symbols

There are two such possible symbols in BP diagram

1 Free comment

This symbol has no syntactic meaning and actually may be placed in other diagrams (TD,
ORG) too. Any text or WMF format picture may be placed there.

2 Show box

This symbol is not syntactically related to the BP diagram in which it is placed. Its elements,
however, must be valid

- qualified BP name (i.e. BP name with prefixed TD names, starting from a primary task).
Qualification may be dropped if BP name is unique in the tree.

- task_name, followed by optional occurrence tag (tag is used if there is more than one
occurrence)

- attribute name of this task.

The only use of such object is during animation of a business model, otherwise it has no effect.

A free comment

<Title>
{<TD_name>.}*<BP_name>
<task_name>[.<tag>]
<attribute_name>
Business Process Diagram 67

•
•
•
•
•

68

•
•
•
•
•

6.2.12 Refinement of complex events

Another issue in BPs is that of complex events. These events must have COMPLEX type already
defined in ET (in the category column). Their component events must be defined in the
corresponding column. When the actual event refinement is done in this refinement BP, the
following syntax is used on the arrow coming from (going to) a referenced task:

complex_event_name.event_name

The event_name is the name of one of the components, the complex_event_name is the name on
the corresponding arrow in the TD (and, consequently, on the arrow in the BP one level up).
The notation means that inside the current BP only the event_name appears further (e.g. is used
for triggering). The “complex qualification” appears only on input/output arrows in BP, and it
is not duplicated in TDs (upper or lower). Any complex event must be refined before it is used
in triggering. On the other hand, elementary component events sent by a task at an appropriate
level boundary must be “packed” into complex event. Refinement may not be used on
horizontal arrows.

Linked primary tasks may also send each other complex events, then refinement may be done
in both top level BPs, or somewhere lower.

6.3 General rules of BP structure

The BP diagram is built from the elements in the previous section in a very natural way.
However, some general rules on internal structure of BP must be mentioned:

• event arrow may go

- from any internal or external task to any like one (including itself). These arrows are called
horizontal ones in the sequel. The number of arrows between two tasks is generally
speaking unlimited.

- from an incoming referenced task to any internal or external task. These arrows are called
incoming events. One or more arrows may leave a referenced task

- from internal or external task (or its decisions if it is a decision task) to outgoing referenced
task (such arrows are called outgoing events). One or more arrows may enter a referenced
task.

• it is permitted to use one referenced task symbol in the role of both incoming and outgoing
referenced task.

• if there are several arrows between two tasks, all of them must have different event names. In
particular, there may be only one control flow between two tasks.

• if the task is a decision task (i.e. it has at least one decision attached), all events may leave only
decisions of the task, and not its body symbol.
Chapter 6

6.4 Graphic layouts of the BP diagram

From the language point of view the BP diagram’s contents is always the same irrespective of how it
is displayed or printed. However, its visual appearance may be significantly altered by the user.

First, any of the text items can be individually made invisible for the given symbol. Visibility
settings can also be applied to a group of symbols, e.g. to all task symbols in a diagram.

If you make some textual elements invisible, they remain internally in place and regain their
position when made visible. Visibility does not affect the syntactic significance of a textual
element.

Second, there are several graphic layouts available:

- vertical

- horizontal

- automatic

- manual

- tabular vertical

- tabular horizontal

In the first two layouts, all elements are automatically placed in fixed grid positions, so that the
general event flow goes from

- from top to down, or

- from left to right respectively.

Certainly, any diagram may be transformed to this layout, with some arrows going in the
opposite direction from the general event flow of the diagram. For simple “streamlined”
diagrams, these layouts are the best, since the obtained ordering then corresponds to the real
ordering of tasks in time.

In automatic layout, a compact allocation of elements is used, with the user having the
possibility to select the place for a new element and the editor moving the existing elements in
a minimal way to allocate space for the new one.

Automatic layout is suited for all kinds of diagrams.

Manual layout gives the user maximum control over the allocation of elements. Even the line
texts may be moved separately. But the user is responsible for the manual moving of existing
elements when a new element is inserted. Manual layout should be used for presentation
versions of diagrams and very compact allocations of large diagrams.

The two tabular layout modes with lanes (sometimes called tabular layout modes) are similar
to the vertical or horizontal modes, respectively. The main difference is that separate lanes are
allocated for each performer selection expression appearing in the diagram. The tasks containing
the given performer expression automatically appear in the lane corresponding to the performer
Business Process Diagram 69

•
•
•
•
•

70

•
•
•
•
•

expression. The performer expressions themselves appear as the lane headings. For two tasks to
appear in the same lane, the performer expression must be exactly the same. The layouts with
lanes are well suited for diagrams with low variety of simple performer expressions. Then they
show a nice table-like display of the tasks to be done by each performer.

There is the possibility of freely switching between all layout styles. The syntactic aspects of
diagrams are remain unaffected.

Figure 6-2 and Figure 6-3 show the same example of Figure 6-1 in vertical and horizontal
layouts, respectively. Figure 6-4 shows an example of the vertical tabular layout, using an
example with a number of performers.

Figure 6-2: Vertical layout

Urgent
10 % EXCLUSIVE

Regular
90 % EXCLUSIVE

Register
Paper based

Prepare_Answer

Register_Query
Secretary
"1m"

Send_query

Forward_to_Chief
&
Secretary
"2.5m"

Prepare_Answer

Analyze_Query
Secretary
"3m"

Forward_Immediately
Secretary
"1m"

At_5_PM
Query

Query

Query

Query

Query Query
Chapter 6

Figure 6-3: Horizontal layout

Figure 6-4: Vertical layout with lanes

Urgent
10 % EXCLUSIVE

Regular
90 % EXCLUSIVE

Register
Paper based

Prepare_Answer

Prepare_Answer

Register_Query
Secretary
"1m"

Send_query

Forward_to_Chief
&
Secretary
"2.5m"

Analyze_Query
Secretary
"3m"

Forward_Immediately
Secretary
"1m"

At_5_PM

Query

Query QueryQuery

Query

Query

Chief Secretary Information_Source

Send_Answer

Investigation_Needed

Send_Answer

Assess_Query
Chief

Detect_Information_Source
and additional questioning
OR
Chief

Prepare_Draft_Answer
OR
Chief

Analyze_Answer
AND
Chief

Answer_question
Information_Source

Send_Question
AND
Secretary

Register_Forward_Query

Investigation_Not_Needed

Query

Query

Question

Query

Address_of_Source
Query

Query

Question

Investigation_Results

Query_and_results

Draft_Answer
Business Process Diagram 71

•
•
•
•
•

72

•
•
•
•
•

6.5 Links between BP levels

Large systems can never be described by only one BP level, a number of BP refinement levels are used
as a rule. Though in general, inter-level links are described by referenced tasks, extended syntactic and
semantic features are offered for describing those links.

In most simple cases, the inter-level links are defined in the most natural way where nearly all
linkage elements are supplied by editors automatically. However, more sophisticated level
structuring is also possible now, e.g., representing fragments of BP diagrams like macros with
many entries and exits. When a task has one occurrence, the refinement is very straightforward.
Figure 6-5 shows an example of simple refinement.

Figure 6-5: Simple refinement

TD for task A represents also its neighbors as referenced tasks, and they reappear in A refinement
via BP, showing clearly, e.g., that event e1 is routed from B to A1.

B

D

G

E

F

A
AND
p1

e2

e3 e4

e1

B

A1 A2

A3

F

A4

E

D

e1 e2

f1 f2 f1

e3
e4

B E

D F

Task :A
Triggering condition :
AND
Performer :
p1

e1 e2

e3 e4

TD ABP C

BP A
Chapter 6

Often this event routing at level boundaries may be more complicated. A formal description of this
routing follows.

Each event is sent by an occurrence of an elementary task. The event’s destination is also one or
more occurrences of elementary tasks, where the event is placed in the corresponding queues.
In any event’s route from its sending task to its destination queue there is just one event arrow
linking the two tasks. If the sender and the receiver are in one BP, and are linked directly by an
arrow, the whole route consists of this arrow.

But often the event at first is routed via several outgoing referenced tasks, then it travels along
the sole “internal” event arrow and then is routed via several incoming referenced tasks (see Fig.
6.5). The internal arrow (the arrow from task A to task B in Figure 6-6) is called the horizontal
link in what follows, the routing via outgoing referenced tasks - the upgoing link, and the
routing via incoming referenced tasks - the downgoing link.

There is one special case when the explicit horizontal link is absent, namely the connection
between two top level tasks (see more in Section 8.1). Then the link is replaced by appropriate
referenced tasks in two top level TDs.

The precise event routing rule is the following. The outgoing arrow for the given event is
analyzed. If it leads to an internal (external) task, the horizontal link is already reached.
Otherwise, the referenced task name list is taken, and the following is repeated for each name
in it (the name is called start name here). In the BP one level up, an outgoing arrow is sought
from the corresponding task, which
Business Process Diagram 73

•
•
•
•
•

74

•
•
•
•
•

Figure 6-6: Event routing (shown via several nested BPs)

• has the same event name (including empty)

• the other end of which is

- an internal (external) task with its name equal to the start name or

- a referenced task whose name list contains the start name

The decisions for non-elementary tasks are ignored in “upgoing”, only event names and
referenced task names are taken into account.

Thus upgoing is repeated until the horizontal link is reached, along which the event is routed.
In Figure 6-6, starting from A11 and event e1 and using B as start name, first the task A1 with
equally named outgoing referenced task is found, then the horizontal link to B.

The downgoing part of routing is started, using the source task of the horizontal link as the start
name (A in Figure 6-6). All referenced tasks in the refinement are found,

A

B

e1

A1

B

e1

A11

B

e1

B1

A

e1

A

B11

e1
Chapter 6

• which are associated with the same event and

• whose name list contains the start name,

and a copy of the event is sent via each. If the other end is not elementary, the search is repeated
a level down, with the same start name. If other end is elementary, the destination queue for the
route is found. In Figure 6-6, using A as the start name, two level downgoing is performed, until
B11 is reached.

The described rules are such that using the default naming of referenced tasks proposed by the
editors (see 6.4) just the natural link is established (including the case in Figure 6-6).

At any level (except intermediate upgoing ones) the event may be multiplied, with a copy sent
along each branch. If no continuation for the event is found, the event is discarded. During
syntactic analysis, situations with the abnormal refinement are found and warning messages are
issued. Actually, the analysis finds only part of these refinement errors (those described in 6.8),
others are found during the preparation for simulation (see 11.2).

6.6 GRAPES-BM model development strategies and tool
support for them

The main model development strategy in GRAPES-BM is assumed to be top-down, with the BP
being the main diagram built manually. TD diagrams are generated automatically most of the time.
More precisely, according to this strategy, at first the primary tasks, i.e. their BPs, are defined. Then
for each of these tasks its first level BP is built. The constituent tasks in this BP are entered one by one
and so are the linking events.

GRADE editors automatically define the corresponding task rows under the parent task and
build the corresponding TD diagrams. When a new TD is automatically inserted, all relevant
information (input events, output events, referenced task symbols with neighbor task names,
referenced timers, decisions, connected data stores) is automatically transferred to this TD. The
textual sections of task symbol (triggering, performers, duration) are also copied to the
corresponding sections of the task body in TD. Decision contents is also transferred
automatically. Unnamed events are transferred in the same way as their named counterparts.

The transfer of this information actually only occurs upon saving the BP diagram. The
automatic transfer may be switched off using editor options, in that case the entire transfer must
be performed using a manual transfer command (menu item Edit/This BP->TDs).

If several occurrences of the same task are present in a BP, the information in the TD is summed
from all occurrences. In particular, for each event and neighbor, where there is no corresponding
referenced task already present, new referenced tasks with appropriate task/event names are
inserted (or the referenced task name list is extended). Externality information is also retained
in the referenced task (and incoming timers likewise).
Business Process Diagram 75

•
•
•
•
•

76

•
•
•
•
•

In case of several task occurrences care must be taken, that textual sections (those appearing also
in the TD) in all occurrences are identical, since only one (actually the last one) will be copied
to the TD.

When a BP is being modified (new event arrows inserted, events renamed on existing ones, etc.),
the corresponding TDs are updated automatically upon saving the BP. If the automatic transfer
mode is off, then the appropriate manual transfer command (menu item Edit/This BP-> TDs)
must be executed. A "global" version of this command (BM Tools/ BP->TDs) is also available in
the model tree window. All these automatic updates include only the augmenting of TDs with
new events, referenced tasks etc. Removing unused events from TDs (i.e., referenced task - event
pairs which have no counterpart in any of the task’s occurrences in BPs) is performed as a
manually invoked operation (BM Tools/Delete events unused in BPs) from the model tree window.
This operation may be performed either at one task level (for the subtree under it) via the
subitem From Subtree TDs or for the whole model via subitem From all TDs. In both cases the
ET is also cleared of unused events.

It is recommended to clear TDs of one level of unused events before building their own
refinement. As far as possible, unused event/refinement task pairs are not copied to the empty
BP template. But if unused event/referenced task pairs do appear also in a refinement BP, they
should be removed from this BP manually, one by one.

The above-mentioned automatic GRADE support ensures automatic correct TD building
when the BP contains elementary tasks. The only necessary manual operation is extending TD
by task data not available in BP, like attributes.

Most GRAPES-BM models contain several levels of BP refinement. The intended strategy is, as
soon as one BP is completed, to refine some of its subordinated tasks by their own BPs. GRADE
editors also provide support here.

The principal idea here is BP template generation from TD. When a new refinement BP for a
task is started (the first one or an alternative), the BP diagram containing all referenced task
symbols (along with their names or name lists) and their associated events, data stores and data
objects (with access paths) from TD and one dummy unnamed internal task in the center is
generated automatically. Figure 6-7 shows this template BP for task T3. Four referenced tasks
with the associated events (e1, e2, f1, f2) and the data store are copied (but not the decisions,
since they may be quite different in the refinement).

The user then modifies the BP, inserting more internal/external tasks in it and reconnecting the
incoming/outgoing event arrows. Care must be taken not to leave the dummy unnamed task as
it was generated, since an unnamed internal task is an error. Referenced task symbols may be
replicated if necessary. It is also allowed to reshuffle referenced task lists for one fixed incoming
or outgoing event into several referenced task symbols in a BP. New referenced task_names in
BP may be added only in case they are also added in the parent TD and the corresponding upper
BP is also updated.
Chapter 6

Both of the automatic generation features described above in totality support automatic
interfaces between BP levels (according to 6.5) in all normal cases. Namely, no additional
referenced task editing is usually necessary, neither in BPs nor in TDs, independently of how
many BP refinement levels are used.

Figure 6-7: Example of TD and corresponding BP template

The next section describes an alternative strategy.

6.7 The alternative way: from TDs to BP

In addition to the standard refinement method, where every non-elementary TD is manually
refined via its BP and corresponding subordinate TDs are generated automatically, another
methodology is also available.

There only TDs are explicitly built and manually placed in the required hierarchy. This
hierarchy corresponds to a function decomposition tree in software engineering terminology.
When all direct subordinate TDs for a TD have been built, a special “Build BP from TD”
operation may be applied to the parent task level. Then the appropriate BP is generated
automatically from all subordinated TDs, basing on

• incoming/outgoing event names

• names of referenced tasks.

• decisions/outgoing events

Namely, each TD is converted into an internal task and placed in the generated BP. Two tasks
are linked by an event arrow, if one TD contains the outgoing part of it and the other the
incoming part (as defined by event names/referenced task names).

Task :T3
Triggering condition :
AND

Rem1 Rem2

d1

Rem4 Rem3

Ds

d2

f1 f2

e1 e2

Rem1 Rem2

Rem4 Rem3

Ds

e1 e2

f1 f2
Business Process Diagram 77

•
•
•
•
•

78

•
•
•
•
•

The non-matching referenced tasks are retained as referenced in BP (they correspond to links
to the next level).

When all incoming/outgoing events and decisions are inserted in the appropriate TDs of one
level, the appropriate BP can be automatically obtained.

The generation principle does not work when two or more occurrences of a task are supposed
to be in a BP.

A BP can even be generated when referenced task names are omitted and generation is done
based only on matching incoming/outgoing event names. This approach does not guaranty the
desired ordering of the BP. The names of referenced tasks in TDs are inserted automatically
(according to the generated BP). Some manual improvement to the generated BP is sometimes
required.

In any case the generated BP may be further modified manually. Figure 6-8 presents a set of
three TDs and the generated BP.

Figure 6-8: TDs and the generated BP

6.8 Formal consistency rules between BP and TD

The built-in automatic consistency features in the editors normally will guarantee consistent
refinements between all TD and BP levels, especially if strict top-down design is used. The user is only
required to connect all incoming/outgoing referenced tasks presented in BP templates to some
existing tasks in these BPs. However, complicated diagram updates, especially manual editing of TDs,
may violate this consistency between levels. The syntax analyzer provides two facilities for ensuring
this consistency:

• consistency between TDs and BPs is checked during the syntactic analysis of BPs

Task : s1

s2

tt

e1

Task : s2

s1

s3

e1

e2

Task : s3

s2

s

e2

e1

s1

s2

s3

s

tt

e1

e1

e2
Chapter 6

• consistency between adjacent BP levels is checked during a special consistency check
operation

The following consistency rules between TDs and BPs are checked by the syntax analyzer during
the analysis of a BP:

• rule governing the relationship between a task’s TD and its refinement in a BP

All incoming/outgoing events (and control flows) and referenced tasks (and referenced
timers) in a BP must be represented in the TD. It means that for each pair of incoming events
with referenced task names in a BP, there must an equivalent pair in the TD. The partitioning
of the task name lists into several referenced task symbols is permitted. The same must be
true for outgoing events. For decision task TDs, it is not significant from which of the
decisions the relevant pair actually go out. This feature is in line with the assumption that
the decision in a non-elementary task is just provided to improve BP readability. If there are
unnamed referenced task symbols in the BP, then the corresponding unnamed referenced
task symbols must also be in the TD. Violation of any of these rules causes an error during
analysis.

• rule between a task’s TD and its occurrences in other BPs (one or several):

All incoming/outgoing events/control flows (and incoming timers) and decisions in an
occurrence must be present in its TD. Events must be attached to referenced tasks, whose
names (or one of the names in the name list) must coincide with the corresponding neighbor
name (i.e., either task name or referenced task name, if the neighbor already is a reference).
Certainly, there may be more events/referenced tasks in TD (corresponding to other
occurrences). Violation of the rule leads to an error during analysis.

The other facility - the global consistence checker may be invoked after analysis from the
model tree window as a separate function, via BM Tools/Check Consistency. It may be applied
either to the Current BP or to All BPs. It checks the following consistency rules between two
adjacent BP levels (where a child BP means a refinement BP for a task occurrence in the given
BP; and a parent BP means the reverse relation; the task occurrence which defines the
parent/child relationship is called the linking occurrence):

• rule between a BP and its parent BP:

An incoming/outgoing link in a BP (i.e., a pair <incoming/outgoing event, referenced task
name>) must have its counterpart in the parent BP, i.e. an appropriately named
incoming/outgoing arrow from the linking task occurrence leading to an appropriately
named task or reference. The similar rule must be true for control flows and timer events
Violation of the rule leads to a warning since there may be no violation of the rule for another
occurrence of the same linking task. Most frequently such warnings are caused by some
remaining unused <event, referenced task> pairs in the refinement BP

• rule between a BP and its child BPs:
Business Process Diagram 79

•
•
•
•
•

80

•
•
•
•
•

each incoming/outgoing event arrow of the linking task occurrence must have a
corresponding incoming/outgoing link in the child BP (i.e., the event path must be
continued inside the child BP). The similar rule must be true for control flows and timer
events. Violation of the rule leads to an error message.

The consistency of parent/child relationship is checked independently for each task occurrence
(having a refinement BP) in the role of the linking occurrence.

The consistency between BP levels is of great importance also for non-simulatable models since
any inconsistent event link is a logical flaw in the model. Therefore consistency checking is
recommended also for informal models built for system modeling. The consistency checking
can only be applied to a model after syntactic analysis. No consistency requirements are placed
on decisions in TDs and their respective equivalents in refinement BPs. The same is true for
data stores.

In order to perform syntactic analysis and consistency checking, the simulatable syntax mode
must be enabled in Options/Settings. In addition, the extended syntax for names should not be
used (see 1.2). The Semiformal syntax mode permits the use of extended name syntax which is
incompatible with syntactic analysis.

Not all event routing irregularities significant for simulation may be found during syntactic
analysis or consistency check. Therefore additional routing checks are done and additional
warning messages appear during preparation for simulation.

Remark. Do not use Semiformal syntax option for simulatable models, the simulator will ignore
any SET and REPEAT options if you try to do so.
Chapter 6

7

Chapter 7
Transaction semantics of BPs

7.1 The concept of the transaction

Very frequently each BP level of a business model corresponds to a real business function or
subfunction performed by the enterprise to be modeled. This is especially true when the structuring
is not very deep.

Therefore it seems natural that each complex task corresponds to a transaction - a certain
sequence of actions with precisely defined start and end moments. The start/end moments of a
transaction are implied by starts/ends of elementary tasks contained in the transaction.

Thus, in GRAPES-BM V4.0 we assume, that each complex TD by default defines a transaction
having the same name as the task itself. Even when a TD has several refinement alternatives, all
these alternatives just determine different behaviors of the same transaction.

Transactions are important for modeling purposes: for better understanding of model behavior
and for defining a reasonable semantics of merging several subactivities of the same activity.

On the other hand, they are very significant for simulation, since some of the default statistics
for a transaction are the same as for elementary tasks, and they are the basis for efficient use of
user defined attributes.

The main syntactic and semantic problem in using transactions is to define how and when
elementary tasks start and end the transaction. There are both default and explicitly controlled
transaction management facilities. Transactions, like elementary tasks, have instances during
execution. Each instance is characterized by its name and a unique system defined Transaction
Identifier (TID). TIDs have similar meaning for BM semantics definition like process
identifiers (PIDs) have in the SDL language.

7.2 Default behavior of transactions

When a transaction (task) has one level of refinement (i.e., all tasks in the refining BP are elementary),
all tasks (both internal and external) in this BP constitute the static area for this transaction.
81

•
•
•
•
•

82

•
•
•
•
•

The default start of this transaction is the start of any task (internal or external) in this area,
which is triggered only by the following classes of events:

• timers

• events coming from referenced tasks

• spontaneously generated events

A modeler who is not interested in the dynamic simulation of a model, may adopt the
convention that a transaction can also be started by an event coming from an external task,
which has no input event. However, in simulation such tasks are inactive and don’t produce any
events at all.

If the task triggering condition contains no OR, it can be determined statically whether the task
starts a transaction. Otherwise it can be determined only dynamically, for each instance
separately.

As soon as a transaction instance is started, a new unique TID value is generated for it. From
now on, all event instances circulating within the transaction are tagged by this TID. So are also
all task instances belonging to the transaction instance. More precisely, the tag consists of

• transaction (task) name

• TID value

There is no explicit use of TID values in GRAPES-BM, these values are used only in implicit
comparisons. Actually these values are integers.

The start task tags all its outgoing event instances (including control flows) with the same tag
value.

Tags are not placed on events which leave the area of the transaction (i.e., are directed to
outgoing referenced task symbols).

If a (non-start) task within the area is triggered by a simple tagged event, the same tag value is
reproduced on all its appropriate outgoing events. If a tagged event is mixed in a triggering
condition with non-tagged events (timers, events coming from remote tasks etc.), the output
tag value is again this one. The most complicated case is when the triggering condition ANDs
several tagged events. Then an implicit merging condition is added to (or forms) the WHERE
condition:

• if the transaction names are the same, TIDs for all events must coincide

• if transaction names are different, no additional condition is required.

Only if the merging condition is true, the elementary task is actually triggered. The outgoing
tag is defined in the natural way (the common value). Merging condition refers also to implicitly
ANDed control flow instances (if they have tags).
Chapter 7

The merging condition operates on the principle, that only concurrently executed subactivities
of the same activity instance should merge together

The unique tag value obtained from the triggering events determines the transaction instance
to whom the task instance belongs and also the tags of all the outgoing events.

If there are several levels of BPs, then each level defines a transaction. When tagged events from
a higher level enter the next lower level (via referenced task symbols), the higher level tags are
retained by them. If e.g., an entry from a referenced task starts a new transaction of the current
level, then events of this transaction carry tag list, corresponding to two adjacent task levels.
When task nesting is deep, the tag list can be arbitrarily long. The merge condition requires TID
equality for all appropriate levels. Namely, in order for this condition to be true for a set of
events, for all events of this set having tags in their lists with one common transaction name, the
TIDs in these tags must also be equal.

For a higher level transaction its static area consists of tasks in its BP, as well as in all subordinated
BPs (of all levels). In the entire transaction area, tags of this level are propagated according to
the above-mentioned rules.

Higher level transactions are also started automatically in nearly all desirable cases. The default
starting rule is the following. When a lowest level transaction is started (along with an
elementary task in it), each event in the triggering set of this task is independently examined:

• for a timer event it is checked whether it comes from a timer symbol in the given BP. Nothing
more is triggered in this case. If, on the contrary, the timer event comes from a referenced
timer symbol, the next level transaction is started also. This action is repeated until the BP
level with the actual timer symbol is reached. That level is the highest activated.

• for an event coming from a referenced task the source of this event in the next higher level
BP is checked. If it is a task (internal or external), nothing more is triggered. If, on the
contrary, the source is a referenced task, the next level transaction is also started. The action
is repeated up to the level, but not including it, where the source of the event is another task.

• for spontaneous events no addition triggering may occur, since they are active only at the
elementary level.

Starting the transaction of the corresponding level means generating the appropriate TID. For
a while this TID is “resident” only in the lowest level task, but it can return to its home level via
events returning to this level. Only one instance of each level transaction is started as a response
to triggering the lowest level task (even when there are several events in the triggering set which
descend along the same path).

However, if one event in an upper level is multiplied to several copies in the lowest level and
each of these copies triggers an instance in the lowest level transaction, then as many instances
of the upper level will also be started. Normally such situations should be avoided since these
independent transaction instances in the lowest level can never merge (which normally should
Transaction semantics of BPs 83

•
•
•
•
•

84

•
•
•
•
•

occur for subactivities of one activity). The best way to avoid starting unnecessary transactions
in the lowest (and subsequent) levels is to use NOSTART option (see later) at all lowest level
entries, except one.

NOSTART prevents the starting of current level transaction and all simultaneous upper ones.

There is also a default dynamic transaction end condition. Namely, when there are no more
event instances with the given TID value in any of the queues within the area, the transaction
with the given name and TID is ended (more precisely, it is ended, when the elementary task
consuming the last such event stops or the event is discarded). Any level of a transaction may be
ended by default this way.

A special case is triggering conditions containing AND ALL and AND <n> options. Tagged
events which are consumed in groups by these options lose their identity and tags after such task
(except the case when equally named outputs leave the task, then each tag instance is retained
in the corresponding output instance). In addition, events in the group (fixed-size or ALL-
group) never participate in the merge condition, i.e. tag comparison is ignored for them. Merge
condition refers only to other events in the AND-list.

All “new” output events from a group-triggered task have no tags at all (except the case, when a
tagged event participated in the “individual part” of AND ALL, then such a tag is merged and
propagated, as for the normal AND).

Spontaneously generated events also have no tags (but they are used as new transaction starters,
see above). If untagged “normal” events (i.e., except timers, spontaneous events and events from
referenced tasks) trigger a task, no default transaction start occurs. If starting is desirable, an
explicit START option must be used.

It should be noted that default transactions of any level always are structurally nested. Namely,
if a lower level transaction starts within a higher level one, then it always ends before (or
simultaneously with) the higher level transaction. This is ensured by the nature of the default
rules.

7.3 Transaction control facilities

In addition to default behavior, there are four explicit transaction control facilities:

• START option

• END option

• NOSTART option

• NOTID option

Transaction control options are present only in BP diagrams (not in TDs).
Chapter 7

START option is placed in task body in BP diagram (but not in TD)

The START option may be placed in tasks which otherwise could be default start points of a
transaction or in any other task as well. The START option syntax is the following:

START [task_name] {,task_name}*
where task_name is an appropriate task from the model tree (which is an ancestor of the current
task).

Omitted task_name means the task in whose refinement we are.

The meaning of the START option is to start a transaction (or transactions) with the specified
name(s).

To be more precise, all transaction levels from the lowest one to the highest one specified in the
task name list are started. The levels are uniquely found from the model tree. Formally, it would
suffice always to mention only the necessary highest level task name, but it is recommend to
include all intermediate levels for the sake of readability. This convention is introduced in order
to preserve the strict hierarchy of transactions defined by the default rules.

Example of the START option:

START order_entry, order_processing, client_transaction

The explicit START is necessary for three purposes:

• there are several default start points for a transaction from which the proper ones are to be
singled out

• transactions of several levels are to be started simultaneously and default rules are insufficient

• transaction covers only part of the BP.

If there are several possible start points of transaction in a BP, then two situations may be true:

• all starts are real alternatives how the current transaction could start. In this case no START
option is necessary (or all of them could be marked by simply START, just to reveal this fact
to the reader). In this case each of the start points starts an independent transaction, which
should never merge

T1
e AND f

perf1

"0.5h"

Start

fe
Transaction semantics of BPs 85

•
•
•
•
•

86

•
•
•
•
•

• One of the start points starts the transaction (e.g., order entry), while others represent some
auxiliary actions (e.g., updating the price list). Then the proper start point should be marked
by the START. The auxiliary ones then must contain NOSTART (see later). Then auxiliary
actions represent no transactions, events participating there are untagged.

With several levels of refinement in business model, there may be a need to start several
transaction levels simultaneously. If default rules are insufficient, the START option with task
name list is used.

In general, the START option may be placed in any task that receives no tagged event of the
current (or of that specified in the START option) level. Then the transaction is started with
this task, but not with the default start point. Certainly, the default start points of BPs leading
to this marked task then should be marked by the NOSTART option (see below). This feature
allows one to define transactions covering only part of a BP (an explicit END option then is
used to end such transaction, as a rule).

If a task marked by the START option is triggered by an event which already contains a tag of
a level specified in the START option, it is reported as an execution error during simulation (in
order to avoid a recursion of sorts).

A special option

NOSTART

is also available in task symbols. This means that the default start point must not start a new
transaction (of the current level and possible higher levels). A typical use of this option could be
when a BP level is defined just because of diagram size, without any functional meaning. Then
all potential start points of such a diagram should be marked by NOSTART, in order not to
affect the transaction behavior defined by a higher level BP. Existing higher level TIDs pass
through task marked by NOSTART without problems.

The implicit transaction end works well when there are no “junk-events” remaining in queues
forever. However, in some cases a normal way of describing a model just requires to leave some
events in queues unconsumed. A typical situation is when time-out activities are to be described:
then either the unused reminder event remains in a queue, or the too-late message remains
unused. To cope with such situations, the explicit END option is used.

The option is placed either at the bottom of the body of a task in a BP

Task1
p1 AND p2

"4d"

End

d1
End

or at the bottom of a decision
Chapter 7

(in order to have effect only if this branch is taken).

The textual syntax of END is much the same as that of START;

END [task_name] {,task_name}

The syntax details and defaults are the same as for START, including the set of affected
transaction levels.

This option forcibly ends a transaction (or transactions), by emptying all queues in the area from
events having tags with the specified name and the current TID value (i.e., the TID value as it
would be passed further). The area for emptying is determined from transaction name. The
current task sends its events untagged.

In addition, active task instances holding the specified tags are terminated forcibly, without
taking any decisions or sending any output events.

Thus the END-option empties all queues in the area from the specified events and the
transaction is ended according to the previous definition. If several levels are to be ended
simultaneously, the lowest one is ended the first.

If there is no tag available with the name required by the END-option, it is a semantic error.

A typical position for END is an exit-task (a task passing events only to referenced tasks) of a
BP, but it can be placed in any task.

Yet another special option is

NOTID

This option may be placed on event arrows in BP diagram, beside the event name (or after
transfer time, if it is present). It may be placed only on horizontal arrows (i.e., arrows not
coming/going to referenced tasks). NOTID doesn’t appear in a TD.

The semantics of NOTID is that no TID of any level is passed along the arrow, i.e., the event
sent along the arrow has no more TIDs at all.

The main use of this option is to prevent merge problems in tasks emulating global variables
(i.e. variables common to all transaction instances). Namely the events representing global data
and looping back to the same task should be marked by NOTID (see the event Account in Fig
7.1, otherwise the global counter task Summing wouldn’t trigger upon arrival of the event
payment from the next transaction instance).

NOTID option may cause an implicit end of a transaction if the TID is being canceled in the
last event instance of this transaction.
Transaction semantics of BPs 87

•
•
•
•
•

88

•
•
•
•
•

Figure 7-1: Example of NOTID use

7.4 Attributes of transactions

Since transactions always correspond to normal complex tasks having TDs, they also have
attributes - namely, those defined by the corresponding Type and Attributes sections in the TD.

Any transaction has the same predefined attributes as any other task - duration and cost.
Duration specification in TD for transaction tasks is ignored.

The other numeric attributes of a transaction must be defined explicitly, by supplying their
formulas in the Attributes section of the corresponding TD (or in the ATR table corresponding
to the task type). It is typical, that attributes are only derived here, and they use vertical
operations (SUM, AVG, MAX, MIN) on predefined or user-defined attributes of elementary
tasks (or lower level transactions). The span of such an operation is the lifetime of the
TRANSACTION task instance. Any numeric or duration attributes appearing in any ATR table
may be referenced in all vertical operations (but not directly!), time type attributes may be
referenced in MAX, MIN and AVG operations. If an attribute appears in several ATR tables all
definitions must have the same type. Partial sums are updated each time an elementary task
instance having the specified attribute is ended (within the static area of the given transaction
and having the appropriate TID). Thus, if the transaction has attribute tot_a1 defined by the
formula SUM(a1), then for all elementary task (and nested transaction) instances within the
given transaction instance the value of a1 is taken (where it is defined) and summed up. When
the transaction task is to be completed, the final values of its (totaling) attributes are passed for
processing at a higher transaction level (if there is such). At that moment also the default
statistics for the transaction is updated.

Rules of using other attributes from their own ATRs in arithmetic formulas for transactions are
the same as for other tasks.

Pay

Next_action

Initials
Nostart

Summing
Account AND payment

. . .

payment

Account /NOTID
SET sum=Account.sum+payment

Account
SET sum=0
Chapter 7

If only attributes of a specific task should be “averaged” at a higher level, it is reasonable to have
unique names for them (there is no way to distinguish, e.g., transaction task cost from
elementary task cost, no attribute qualification is supported in V.4.0).

The sole use of transaction attributes is for obtaining statistics - both static and dynamic (and/or
computing attributes of higher level transactions). There is no way to use transaction attributes
to influence system behavior.
Transaction semantics of BPs 89

•
•
•
•
•

90

•
•
•
•
•

Chapter 7

8

Chapter 8
Additional structuring features of business
models

8.1 Interaction of primary tasks

A business model consists of business functions which are represented by top-level tasks. Any top-
level task which is refined by a BP defines its activity which proceeds concurrently with other such
ones. Certainly, only these tasks which contain a timer (or spontaneous event) at any of the
refinement levels actually become active during simulation. By default, top-level tasks function
independently of each other.

Sometimes some interaction is necessary also between these top level tasks. GRAPES-BM
version 4.0 proposes some facility for describing this interaction. Namely, the TD of a top level
task may contain also internal referenced task symbols containing names of other top level tasks.

Certainly, there may also be other referenced task symbols in top level TD, but these symbols
are necessary for the case when this top level task is “called” somewhere lower, i.e., it has an
occurrence there (see next section).

The semantics of the facility are explained on an example.

 Let us assume that there are two refined top level tasks A and B in the model

Let us assume that the task A sends a message e to task B. Then the TD diagram for the task A
must contain elements shown in Fig. 8.1.

BUSINESS MODEL modelBMCMT ET CMP SP

TASK ABPCMT TD AT PD

TASK BBPCMT TD AT PD
91

•
•
•
•
•

92

•
•
•
•
•

Figure 8-1: TD diagram for task A

TD for B, in turn, must contain elements shown in Fig. 8.2:

Figure 8-2: TD diagram for task B

In further refinements of both A and B by BPs, the top level task names are propagated deeper,
i.e., used in referenced task symbols at lower levels, until the real communicating partners in
both tasks are reached.

It is forbidden in one top level TD to communicate directly to components of another top level
task, i.e. only true top level communications can be defined this way. Lower referenced tasks
may appear only for “call situations” (see 8.2).

Such a mechanism is required only to describe top-level interactions. Ordinary BPs serve to
describe interactions in one top level task.

The semantics is such, as if there were one more BP diagram, containing top-level tasks as
elements. Then TDs for top level tasks would look just this way. However, normally it is
unnatural to include such a BP in a model, since top level tasks represent independent functions.

From the simulation point of view, it should be remembered that in contrast to “calling” top
level tasks at a lower level (see section 8.2) no internal copy (in the sense of 11.1) of it is
generated, when top level task communication is described via their TDs. Each top level task
(together with its refinement) defines its single static occurrence which behaves independently
(or communicates with others using facilities just described). Unrefined top level tasks (i.e. tasks
having only TD) have no activity of their own, they should be “called” in a BP in order to be
utilized.

Task : A

B

e

A

Task : B

e

Chapter 8

8.2 Independent tasks and the multiple use of tasks

The standard way of defining a task is to define it as a part of direct refinement of another task.
Such tasks are called refinement tasks in what follows. However, it is also possible to push the
task definition point (i.e., its definition row showing its TD and, possibly, BP) up in the
business model tree, thus making it re-usable in several independent BP diagrams. Such tasks
are called independent tasks. Top level tasks are always independent tasks by definition.

There is no difference in TD syntax whether the task is a refinement task or independent task.
In any case the task may be elementary or complex, it may be a transformation or decision task.
It should be remembered, that an independent task must have all its input and output events
and referenced tasks specified, in order to use it properly in a BP diagram. For this reason top
level TDs also must have input/output events and referenced tasks specified, when they are used
in other BP diagrams (this reason is different from the one described in 8.1).

Thus the distinction between refinement and independent task is made only by its position in
the business model tree.

Any task - refinement or independent may be used in any BP diagram where it is visible.

The visibility area is defined in a manner typical to GRAPES (see also 1.2):

• top level task is visible in any BP within the business model;

• task placed just under a certain task T is visible in any of BPs placed somewhere under the
task T, i.e., either in a direct refinement of T or in a BP lower in the hierarchy.

It is permitted to redefine a task defined higher once more at a lower level. It is also possible to
have different definitions of a task with the same name in different branches of the business
model tree.

Any task - whether refinement or independent is used (“called”) in a BP diagram, using the same
internal task symbol. The task name in this symbol must correspond to a visible task (TD) name. The
input/output connections and decisions (if any) of the symbol must match those specified in its TD.
The event matching is done by their names and referenced task names, control flow being the only
event without a name. There may be less connected inputs/outputs and decisions to the symbol than
in the corresponding TD. There is no restriction on how many times a task is used in several BPs. It
is forbidden to reference tasks recursively (e.g., BP of the task A uses task B and vice versa).

In a strongly top-down design mode, TDs for independent tasks are defined at the proper
position in the model tree using the TD editor. The referenced task symbols may be left
unnamed at first, their names will be supplied later when occurrences appear. However,
automatic insertion in TD when referencing this task in a BP diagram with more input/output
events works also in this case.
Additional structuring features of business models 93

•
•
•
•
•

94

•
•
•
•
•

When a TD is generated automatically upon mentioning a new (invisible) internal task in BP,
this TD is placed in the position of a refinement task. It is possible to push manually this task
up in the tree, to make it usable in several BPs. From this moment, all automatic updates in this
TD invoked by the usage of the task in several BPs are summed up irrespective of the position
of task (according to visibility rules!).

The intended formal semantics for multiply used (“called”) tasks is that of macro-expansion: if
the referenced task has a refinement, the internal task symbol is virtually substituted by its
refinement BP, with input/output events connected accordingly.
Chapter 8

9

Chapter 9
Simulation parameters and their usage

In order to make simulation experiments with a BM model more convenient, a special simulation
parameter table has been introduced (SP). This table contains Parameter name, Data type and Value
columns, thus defining named constants like those in Fig. 9.1:

Figure 9-1: Example of SP table

Only the following elementary types

- integer

- float

- duration

- time

may be used in the type column. The additional description column contains any informal
information. The value column must contain a valid constant of the given type.

The main use of constants from SP are in TD diagrams.

These constants may be referenced in nearly all the textual elements of any TD diagram of the
model where a constant of the appropriate type is valid, i.e. they may be used in attribute values
or expressions, as duration values, in decision formulas, output event data setting, REPEAT
values for output event sending, input event REPETITION specifications and WHERE
conditions (but not in PRIORITY, MAX INSTANCES and ALTERNATIVES sections).

The most typical use of simulation parameters is just to set task attribute (predefined or user
defined) values, since these are the values which need to be easily changeable during simulation
experiments.

Fixed_costs FLOAT 5.01

Line_count INTEGER 20

Task_1_duration DURATION "5m"

Parameter name: Data type: Value: Description:
95

•
•
•
•
•

96

•
•
•
•
•

The other diagram where these constants may be referenced is in the ORG diagram (performer
efficiency), ET table (in timer repetition, transfer time specifications and persistence), ATR
table (in default and formula) and BP diagram (event transfer time and copies of text items in
TD).

During a simulation session the parameters may be both viewed and modified (in a special
tabular form). The new values immediately have effect in the session continuation, without any
model reanalyzing. During the session these constants may be saved in the repository. Named
saving is possible, thus several sets of values can coexist in the repository for simulation
experiments. However, there is only one set of values visible via the editor (namely, those set by
editor).
Chapter 9

10

Chapter 10
Data in GRAPES-BM

Though GRAPES-BM is a pure modeling language, some data processing is present in it. In general
it is a small subset of GRAPES/4GL facilities, though some specific features are also present. This
section describes constants and data expressions as they can appear in various GRAPES-BM
constructs.

10.1 Constants

For full use the following type of constants are available in GRAPES-BM:

• integer constants

• float constants

• duration constants

• time constants

Integer constants are unsigned strings of digits (not exceeding Maxint for 4 bytes, i.e.
2147483647). Where allowed signed constants are obtained as constant expressions with unary
minus prefixed to an integer constant.

Float constants are in the form

int_const.int_const

also unsigned. Signed float constants again are obtained as expressions. The form .01 is not
permitted, use 0.01. In places where only constants, and no expressions are permitted (e.g. the
Default column of an ATR table) a proper float number must be present for a float type object
(i.e. 1.0 but not 1).
97

•
•
•
•
•

98

•
•
•
•
•

Duration constants are strings in double-quotes, containing any descending unit sub-sequence
from the following units:

days (d)

hours (h)

minutes (m)

seconds (s)

Characters in parenthesis show the unit qualifier. Units are separated by a colon. The unit
amount is a integer or float constant. For seconds the amount is rounded to an integer.

Years and months are not used in GRAPES-BM constants.

Examples:

“1d”

“3m”

“1d:1h:1m:1s”

“2h:10.25m”

“100.02d”

“1m:10s”

Time constants also are strings in double-quotes. They may be in date or date-time format. Date
format contains year, month and day. Date-time format, in addition, contains hour, minute,
second. The separator in the date part is period, in the time part - a colon, between parts - just
one blank space.

Each unit element is a fixed-format integer, without unit qualifiers:

year: 1900 .. 2099

month: 01 .. 12

day: 01 .. 31

hour: 00 .. 23

minute: 00 .. 59

second: 00 .. 59

Examples

“1996.03.28”

“1996.04.30 12:00:00”

Invalid dates such as 02.30 are converted to valid values, 03.01 or 03.02 in this case.

The following constants may only be used in an ATR table and in the Attributes section of TD
diagrams, for setting constant values of attributes (but not in expressions).
Chapter 10

String constant - a string in double-quotes.

List constant - a comma separated list of constant values.

10.2 Data Expressions

There are two kinds of expressions in GRAPES-BM V4.0: the special ones such as event expressions
in triggering conditions and performer expressions, and general data expressions.

This section describes general data expressions. They are used in the ATR table, the Attributes
section of the TD body and output detailings.

The following types of data expressions are present in GRAPES-BM V.4.0:

• integer expressions,

• float expressions,

• duration expressions,

• time expressions.

A special type of expression with a different use are Boolean expressions, and they will be defined
at the end of this section.

Arguments of an expression may be the following:

• direct constant,

• named constant from SP,

• user-defined attribute_name (from the ATR table which corresponds to the given task type),

• predefined attributes of a task (duration, cost),

• input event_name (if the event has an elementary data type), may be used in expressions
within elements of a task (in a TD or BP),

• input event_name.field_name (if the event has a record data type), may be used in
expressions within elements of a task (in TD or BP) (for nested records qualifications of type
field1.field11.field111 are used),

• built-in function.

Expressions are built from arguments using operators, parentheses and vertical operations.
Vertical operations: SUM, AVG, MAX, MIN have the form: op(var_name), where var_name is
an attribute_name (user defined or predefined, may be used in formulas for transaction task
attributes) or an event_name or event_name.field_name(used in formulas inside task triggered
by event groups). The span of a vertical operation depends on contexts of the two formula
Data in GRAPES-BM 99

•
•
•
•
•

100

•
•
•
•
•

(either all elementary task activations within the transaction instance or all events within the
actual activating group). Formally vertical operations may be applied also to a single object (then
just the argument value is returned).

The operator priorities and use of parenthesis are the standard ones.

Now some details regarding expressions according to their types. In what follows, by variable we
understand an attribute name, event name or event field name, respectively.

Integer expressions may contain

• integer-valued constants or variables

• operators +, -, *, DIV, MOD

• vertical operations SUM, MAX, MIN

• integer random functions

• INTEGER function from real expression (returning the nearest integer, e.g.,
INTEGER(0.7)=1, INTEGER(0.2)=0, INTEGER(1.2)=1)

• duration_expression DIV duration_expression.

Float expressions may contain

• integer or float-valued constants or variables

• operators +, -, *, /

• vertical operations SUM, MAX, MIN, AVG

• integer or float random functions

• duration_expression / duration_expression.

Duration expressions may contain

• duration-valued constants or variables

• operators +, -

• subexpressions duration*integer, duration*float

• vertical operations SUM, MAX, MIN, AVG

• duration random functions

• subexpressions time - time

Duration expressions must have non-negative values.

Time expressions may contain

• time-valued constants or variables

• subexpressions time + duration, time - duration

• vertical operations MIN, MAX, AVG
Chapter 10

• time built-in functions NOW and START_TIME

Some restrictions on the time value set will be present (e.g., > 01.01.1900). There are no
random time functions (these should be modeled using duration). NOW returns the current
model time, START_TIME - the starting point of the simulation session. Both these functions
are prohibited in the WHERE part of a triggering condition

Random functions are:

• UNIFORM (min, max)

• NORMAL (mean, deviation)

• EXPONENTIAL (mean)

These functions may be used in conjunction with the integer, float and duration arguments,
returning the corresponding type.

And lastly, a description of the Boolean expressions (used in decisions and WHERE conditions).

They are built from:

• relational expressions

• Boolean operators AND, OR (and their alternative notations “&”, “|”)

• parentheses

• special predicate Is_triggered_by (event), may be used in decisions

Relational expressions are built from integer, float, duration, time expressions and comparison
operators:

=, <>, >, <, >=, <=

All operators may be applied to all types, both arguments must have equal types (except that
integers and floats may be mixed).

Arithmetical operators have higher priority than comparison operators, comparison operators
have higher priority than Boolean operators.

All arguments may be used in decisions, though WHERE has restrictions (see section 5).

String expressions are only of the simplest form: just the direct or a named string constant. They
may be only used to set the value of a string attribute (in an ATR table or the Attributes section
of a TD). Strings may not be used in comparisons.
Data in GRAPES-BM 101

•
•
•
•
•

102

•
•
•
•
•

10.3 Data type definitions in GRAPES-BM

GRAPES-BM components uses the same DD Datatypes diagram for data type definition (see
Online help for a general description of the DD diagram). When a DD diagram is present a
business model, it may contain any datatype definition, but some restrictions apply to data types
actually referenced in other GRAPES-BM diagrams.

There are three contexts where user-defined datatypes are used in GRAPES-BM. The first and
simplest one is the use of datatypes for entity types in ER models. Any record type is valid, no
GRAPES-BM specific restrictions apply. See more on datatypes for ER models in Online Help.

The second context are datatypes for message events. Here again a record type is required.
Record nesting to any level is permitted. For simulatable models, there is an additional
requirement that a record field (i.e. an event field) referenced in attribute sections, SET-options,
REPEAT-options, triggering conditions or decisions must be:

• elementary

• have one of the types integer, float, duration, time, without any additional type attributes.

The third context are datatypes for global variables (see section 14). Here any array or record
datatype or a nested combination of both may be used. But a record or array element must have
one of the types integer, float, duration or time. Bounds of an array must be non-negative integers
or integer constants from SP table.

The additional requirements are checked during the analysis of a TD diagram where the field is
referenced. There are no additional messages during the analysis of DD diagrams.
Chapter 10

11

Chapter 11
GRAPES-BM semantics for simulation

Though the preceding sections already defined the semantics for GRAPES BM V4.0 in more or less,
here we present the summary of this semantics, in a more practice oriented way, i.e. in the way this
semantics is used in simulation. The informal elements of the language are ignored here.

This section has two purposes. On one hand, it can be treated as an abstract GRAPES-BM
execution semantics definition in an operational style. On the other hand, the description is
close to the real actions performed by GRADE during preparation for simulation and during
simulation itself, including some hints on diagnostics.

11.1 Preparation for execution - tree expansion

After a model has been analyzed and simulation has been selected, first the business model is
automatically transformed slightly. The model tree is expanded, under each occurrence of a complex
task its complete subtree is attached (where it is not already present). In this expanded tree all
occurrences of elementary tasks are found. For each such occurrence an empty queue frame is built.
If alternatives are used, they are placed in parallel at the same level.

For each of the named events one queue is built for the occurrence irrespective of how many
incoming referenced tasks associated to this event are in the TD. For each incoming control flow
(i.e., for each associated referenced task name) in the TD, a separate queue is built. These queues
are only the potential ones. In the routing phase only those queues will be retained in each
occurrence, which have at least one potential source of events (see 11.2), the others are removed.

Queues are built for occurrences of both internal and external tasks. Only for external tasks
without names (and without TD, as a consequence) there are no queues, these tasks are marked
as “dead” ones (no events reach them, they send no events, they don’t appear in statistics).

Since new internal copies of BP diagrams are built in this way, which in principle should be
observable by the user (in traces, statistics, animation, execution-time inspection), unique
qualified names are assigned to them.

When no task occurs more than once in a BP, and no alternative are used, the simplest qualified
name is:

TD_name1.TD_name2.TD_name3.BP_name
103

•
•
•
•
•

104

•
•
•
•
•

When alternatives are used, alternative names in parenthesis are appended to corresponding TD
names:

TD_name1(BP_alternative_1).TD_name2.BP_name

When there are several occurrences of a task within a BP, these occurrences are distinguished by
appending the occurrence tags (insertable via BP editor) or artificial numbers if there are no tags
specified for task names:

task1.tag1, task1.tag2

Specific tasks in a BP are named the same way, inserting the task name (normal or extended)
instead of the last BP name e.g.

TD_name1.TD_name2.TD_name3 .

11.2 Event routing

The next step in the preparation for model execution is finding all possible routes for each event
emerging in the model.

For each occurrence of an elementary task in the expanded model tree and for each of its
outgoing events (control flow) all possible event routes to other elementary tasks in the
expanded tree are found.

This is done according to routing rules in section 6.5. Direct “channels” (which correspond to
the found routes) are established for each outgoing event (more precisely, for each pair: event
and associated referenced task name), thus preparing a copy of the event (or control flow) to be
sent along each of the routes. As explained in 6.5, each route definitely contains just one
horizontal link (event arrow connecting two non-remote tasks in a BP) and possibly the upgoing
and/or downgoing link defined via referenced tasks. There is one case without an explicit
horizontal link, namely, the connection of two top level tasks defined by appropriate
incoming/outgoing referenced tasks in two top level TDs.

Each route ends in a specific input queue of a task occurrence (but there can also exist routes
which terminate in the middle, see later). For named events this queue is determined by event
name. For control flows the queue is selected on the basis of the coincidence between the start
name (see 6.5) and a name in a referenced task name list. The queue is marked as active as soon
as at least one route reaches it.

After the routing process is completed, all potential queues in all task occurrences, which have
remained inactive, are discarded. Thus they don’t participate in simple AND (and default AND
for control flows) triggering conditions.

During the routing process some global routing diagnostics are performed. If there is more than
one occurrence of a task, it is completely normal, that in a specific occurrence of this task (or its
components) some outgoing routes (determined by pair: event name, referenced task name) are
disrupted during routing (they are used in other occurrences, in turn). A symmetric situation is
Chapter 11

for incoming routes. But if an event remains unconnected altogether, this is considered to be an
anomaly. Messages created by routing diagnostics are formulated as warnings. A warning is
generated, if

• for the given outgoing event name no route from the task occurrence reaches a destination
queue

• no outgoing control flow (if there is such in the TD) from the occurrence reaches a
destination queue

• a potential queue for named event is discarded as unconnected

• the last queue for incoming control flow is discarded

Simulator warnings are displayed in the same way as analyzer warnings. After preparation for
simulation these warnings will be attached to the most appropriate symbols in the appropriate
BP diagrams and the diagram’s status circle changed to yellow in the model tree (if one or more
warnings and no errors are present). The display of warnings may be switched off (in the model
options).

Such warnings would never occur if default referenced task names proposed by editor are
retained in TDs and are really used in refinements of these TDs by BPs. However, hand-edited
TDs and incomplete refinements may cause these warnings to appear. Since such a construct
may be semantically valid in a model, no errors, but only warnings are generated. It should be
noted that this kind of diagnostics is by nature incomplete during local analysis of separate BPs
or TDs (according to 6.12) and therefore has a global character. The local analysis can reveal
routing deficiencies only when the TDs in the model have no superfluous incoming/outgoing
events, i.e. they have not been modified manually too much. The routing checks during
preparation are even more powerful than the global consistency checks.

During execution, output events having no valid route are simply discarded without any
message.

Now some more notes concerning routing in special cases: timers, unnamed externals, BP
alternatives and complex events.

Timers generate only inputs for tasks. They are either directly linked (by a horizontal link) to one
elementary task, or have also the downgoing part of the route (defined by referenced timers) and
finally reach one or more elementary tasks. Routing is done based only on timer names. The
difference between several equally named timers attached to an elementary task each, and one timer
“cascaded” down to several tasks, appears only in one subtle cases with random timers. Each timer
symbol occurrence in the expanded tree acts as an independent timer, sending its events according to
routes.

Unnamed external tasks (without TDs!) participate in the routing process (via unnamed
external referenced tasks). But they are specially marked as “dead” tasks and events being sent to
them are not sent at all.
GRAPES-BM semantics for simulation 105

•
•
•
•
•

106

•
•
•
•
•

All BP alternatives are taken into account during the building of the expanded tree. Alternative
expansions are included in the same tree. During routing, alternative routes are also found
(more precisely, packages of them). During execution, one route from the package is selected,
based an alternative probabilities (default is equal chance, if probabilities are absent).

Complex events may neither be generated nor received by elementary tasks. They are only used
to reduce the number of routes in high level BPs and TDs. During the routing process (its
upgoing part), at some BP level, an elementary event may be “hidden” into a complex event
(using syntax defined in 6.2.12). The routing is continued with the complex event keeping the
elementary event name in mind. In the downgoing part of the route the level is found where the
original event is singled out again from the complex one and finally reaches its destination.
When no event refinement is found the original route is discarded.

11.3 Starting the execution, timers

Now the execution of a model may start. The simulation time is set to the selected start value.
In general, the simulation time moves forward, when there are no more simulation steps to be
performed in the current time moment.

At the beginning, the only active elements in the model may be timers (and spontaneous events
described by similar syntax). Each occurrence of a timer symbol in a BP is treated as an independent
timer. Timers with a time point specification become active according to their description. Interval
(i.e., REPETITION) timers become active for the first time, when the specified interval has elapsed
from system start. Each timer activity generates a new event instance, which travels and is enqueued
according to general rules. By default, timers are instantaneously enabling (“0s” persistence), i.e., if
they cannot be used for triggering in the same simulation time moment, they are discarded (when the
model time is advanced, thus all simultaneous events actually “meet” the timer). Timer events always
are untagged.

If several alternatives of a task (at any level including the top one) contain timers, they all
function independently, so no probabilities affect this behavior.

11.4 Starting a task

As soon as a new event is enqueued in queue (for an elementary task), it is ascertained whether the
task can be triggered. If it cannot be, nothing is done in the task. If the task can be triggered according
to the triggering condition, the task is marked as potentially triggerable and looks for performers. The
merge condition is always an integral part of the triggering condition if incoming events have TIDs.
If one of the appropriate performer sets is found to be free and available, the task is triggered.
Otherwise the task is put on the waiting list for performers (the relevant ones). As soon as some of the
relevant performers are released (or become available) a new test for triggering is done. Priorities are
Chapter 11

taken into account in this test, but within one priority level all waiting tasks have the same chance to
be triggered (the precise scheduling is implementation dependent). If any of the involved events has
a limited persistence (e.g., a timer), it is removed from the queue at an appropriate model time
moment. This can make the task untriggerable and thus removed from the waiting list.

The actual triggering set of events is consumed (transferred from queues to the task instance
data). Timers are processed according to rules in section 4. The selected performer set is assigned
to the instance. Performer availability may expire before the task is completed, but this fact is
ignored in version 4.0.

Just before starting, the following actions are performed:

• the current value of duration is computed (possibly using consumed events as inputs and
taking into account the minimum efficiency of selected performers)

• if the task is a transaction start (default or with explicit START option), a transaction(s) is
started - a new TID for the required level is generated and the tag element created (or
appended to inherited tags)

• Only then the task is started. From the technical simulation point of view, an active task does
nothing. It only waits for its duration to expire.

Each task instance has its unique Id, which is used only to identify instance-related actions in
the trace. It may also be part of one or several transactions at different levels, and then the task
instance carries the corresponding TID values.

11.5 Ending a task

When the time point where a task ends is reached, the following is done

• its cost is computed, according to the formula

duration*SUM(Cost_per_hour)

for all performers used (duration converted to hour units), taking into account efficiency as
well if used

• user defined attributes are computed according to their formulas. If a random value is used
somewhere, each occurrence is a separate random generator

• if the task is a transformation task, all outgoing event (according to TD) instances are created
with their data set by SET options and sent (see next section). Each created event instance
has its unique ID (used in trace). The data are passed or set according to section 5.8. Tags are
added according to section 7. Group sending (for multiple triggering) and REPEAT option
generates a group of independent events.

• if the task is a decision task, the decisions are evaluated one by one, and these found valid are
executed (the corresponding events sent)
GRAPES-BM semantics for simulation 107

•
•
•
•
•

108

•
•
•
•
•

• if the task is in a transaction, whose attribute formulas reference attributes of the given task,
the appropriate partial sums are updated

• if the tasks ends a transaction (by default or forcibly), the transaction instance attributes are
evaluated and passed up (to a higher transaction)

• the task statistics for the task occurrence (and terminated transactions) are updated.

All task ending activities are performed as a group, without advancing time. Only then the task
is really ended.

11.6 Sending an event

A generated event (with or without data) is sent according to the following rules:

• all valid (i.e., connected to a queue) routes for the event in the given occurrence are found
and a copy of the event is sent along each. If there are BP alternatives involved, one route
from the package (see 11.2) is selected randomly according to the probabilities. If the route
leads to a “dead” task, the event is sent nowhere and ignored in statistics. If statistics are
required, a named external task must be used.

• the transfer time for each route is found. Either the transfer time of the single “horizontal”
link in the route is taken (if it is specified in the BP) or the transfer time from the ET is taken.
If nothing is specified, the default is zero. Links to incoming/outgoing referenced tasks never
affect transfer time (it is forbidden to specify transfer time for them in a BP).

• When the transfer time has elapsed the event is enqueued in the destination queue.

The whole sequence of simulation steps is repeated until the end of the simulation session.
Chapter 11

12

Chapter 12
Simulation statistics

12.1 General principles of automatic statistics gathering

The GRADE simulator, during execution of GRAPES-BM models, supports automatic gathering of
statistics about the model execution. There is a list of predefined statistics, which can be gathered by
switching them on in the simulator control window. Additional statistical items may be included on
the basis of user defined task attributes.

Though the gathering of any statistics item may be switched on or off, the formulas and
gathering rules for each of the items are predefined and may not be modified by the user.

The following groups of statistics items are available:

• statistics on tasks

• statistics on performers

• statistics on events

Statistics on tasks are gathered on every occurrence of an elementary task, and, in addition, on
every occurrence of a complex task which defines a transaction. Complex tasks which define no
transactions are ignored in statistics. For elementary tasks all possible items are available, for
transactions only some of them.

Both for elementary tasks and transactions, any user defined attribute having numeric or
duration type may be used to define additional statistics items. The processing is similar to that
for the predefined attribute cost.

The gathered statistics are visible in the simulator, and in a special GRADE component named
the Trace Browser, in the form of tables and EXCEL-like charts. Each table contains a group of
closely related statistics items as its columns. It is typical that there are Total, MAX, MIN and
Average columns for the same table. Each row of the table corresponds to a task occurrence in
the expanded model tree (see 11.1). Each task occurrence is identified by its

- task name

- BP name
109

•
•
•
•
•

110

•
•
•
•
•

- full qualified task name in the form TD_name1.TD_name2.TD_name3. In the case of
several occurrences tags (user defined or generated) are also used (see more in 11.1).
Qualified names are necessary if task names are not unique.

Statistics on performers are based on the performer elements in the ORG diagram of the model.
Actually statistics are only gathered for those ORG elements which are referenced in at least one
performer expression of an elementary task.

Statistics on events are based on input event queues of elementary tasks. There is a table entry
for each elementary task occurrence in the expanded tree, and each event which has an input
queue for this occurrence.

In addition to automatic statistics, which are mainly static in character (i.e. the average value
over a time period is obtained) statistics on model dynamics can also be obtained. This is done
by recording the important numeric data of a model (transaction or task attributes, event fields)
in a textual trace and then importing the trace into Excel. The actual statistical post-processing
of data, including building of charts, is then performed in Excel. See more on it in the GRADE
Simulation Tutorial, sections 6.6 and 7.6.2.

12.2 Statistics and warm-up period

In statistical examinations of real system models in simulation it is typical, that the initial period
of system behavior is not representative of its later behavior. Most frequently, the model must
be “populated” until all of the event queues at overloaded tasks reach their stable length or a
significant percentage of performers actually become busy. Therefore a warm-up period may be
set by the user during simulation experiments, and the gathering of statistics begins only after
this period has elapsed.

However, this period causes also some definition problems, due to tasks having started before
the end of this period and ending after it. There are also similar problems due to the simulation
session end (which again may be set by the user). There are not only problems with tasks but
also with events, e.g. having entered a queue during warm-up and consumed after it.

In general, there are three modes for the exact counting of statistics after warm-up and at session
end:

1 count any task which at least partially lies within the period from warm-up end till
session end (i.e., the accounting period)

2 count all tasks which start in the accounting period

3 count all tasks which end in the accounting period.

For each of the statistics items, just one of the modes will be used, and all related values (total,
average, min, max) are always obtained by the same mode.
Chapter 12

Modes for events are defined similarly, via their entering/leaving a queue. For each of the
statistics items its mode will be shown in the definition tables. Special remarks will be given for
few non-standard definitions.

It should be noted that the definition of an item fully applies to a completed session. If the
results of a paused session are being viewed, the values displayed reflect the values obtained from
the last update to its internal variables (cumulative sums or counters). The special end-of -
session processing used for mode 1 values is also not applied in this situation.

12.3 Statistics for tasks

Statistics items for tasks are grouped in the following tables:

- activation of the tasks

- task waiting time for start

- task waiting for triggering condition completion

- task waiting for performer

- time without any active instance of the task

- task processing time

- task costs

- user defined task attributes

The following describes the content of these columns. For each of the results columns a formal
variable (TOTCA, TOTCC, etc.) is given. After the tabular overview, each of these variables is
given its formal definition by formula, with some additional comments on the computing rules
used. The formal variable names are just for documenting purposes and are not used either the
language or in simulator tool.

Activation, time without any instance, processing time, costs and user defined attributes are
defined both for elementary tasks and transactions. The other tables are defined only for
elementary tasks.
Simulation statistics 111

•
•
•
•
•

112

•
•
•
•
•

Table caption Columns Variable Mode

Activation of the
tasks

Task name

BP Name

Total count of activation

Total count of completion

Maximum count of concurrently active instances

Average count of concurrently active instances

Minimum count of concurrently active instances

Tasks remaining active

TOTCA

TOTCC

MAXCA

AVGCA

MINCA

TRA

2

3

1

1

1

1

Task waiting time
for start

Task name

BP name

Total waiting time for task start

Maximum waiting time for task start

Average waiting time for task start

Minimum waiting time for task start

TOTWTC

MAXWTC

AVGWTC

MINWTC

2

2

2

2

Task waiting for
triggering
condition
completion

Task name

BP name

Total time for triggering condition completion

Maximum time for triggering condition completion

Average time for triggering condition completion

Minimum time for triggering condition completion

TOTTCC

MAXTCC

AVGTCC

MINTCC

2

2

2

2

Table 12-1: Statistics for Tasks
Chapter 12

Task waiting for
any performer

Task name

BP name

Total waiting for any performer

Maximum waiting for any performer

Average waiting for any performer

Minimum waiting for any performer

TOTWP

MAXWP

AVGWP

MINWP

2

2

2

2

Time without any
active instance of
the task

Task name

BP name

Total time without any active instance of the task

Maximum time without any active instance of the task

Average time without any active instance of the task

Minimum time without any active instance of the task

TOTIA

MAXIA

AVGIA

MINIA

1

1

1

1

Task processing
time

Task name

BP name

Total processing time

Maximum processing time

Average processing time

Minimum processing time

TOTPT

MAXPT

AVGPT

MINPT

2/3

2/3

2/3

2/3

Task costs Task name

BP name

Total cost

Maximum cost

Average cost

Minimum cost

TOTCOST

MAXCOST

AVGCOST

MINCOST

3

3

3

3

Table caption Columns Variable Mode

Table 12-1: Statistics for Tasks
Simulation statistics 113

•
•
•
•
•

114

•
•
•
•
•

12.3.1 Definitions of variables

TOTCA - Total count of task starts since end of warm-up period. The current value is updated
when each instance of this task is started.

TNOW - The current value of simulation time.

TWARMUP - The end of the warm-up period.

NCA - The current number of concurrently active instances of the task. It is set to its actual
value at the end of warm-up and maintained after that.

TSLCA - Time since last task start/end (or since TWARMUP for the first start/end).

CCAT - Cumulative concurrent activations_time. It is calculated after tasks start or end as NCA
multiplied by the value of TSLCA and the result is then added to the current value of CCAT.
At session end, the last NCA multiplied by the last time interval is added.

MAXCA - Maximum value of NCA.

AVGCA - Average count of concurrent active instances. It is calculated by dividing CCAT by
the current value of (TNOW-TWARMUP).

MINCA - Minimum value of NCA.

TOTCC - Total count of task instance completions in the accounting period.

TRA - Number of instances remaining active (at the moment when statistics are taken).

WTC - Time interval between the occurrence of the previous and current task instance starts
(or between TWARMUP and start for the first start after warm-up). If several instances of a task
start simultaneously, they are accounted in NTC, and WTC with a zero value added for each.

NTC - Number of task starts, actually the same as TOTCA.

User defined task
attributes

Task name

BP name

Attribute Name

Total

Maximum

Average

Minimum

TOTATTR

MAXATTR

AVGATTR

MINATTR

3

3

3

3

Table caption Columns Variable Mode

Table 12-1: Statistics for Tasks
Chapter 12

TOTWTC - Total waiting time of a task for start. This accumulates from the end of the warm-
up period until the end of the accounting period, i.e.

MAXWTC - Maximum of WTC.

This formula is valid with NTC > 0.

MINWTC - Minimum of WTC;

TCC - Time interval between the moment when the first event which satisfies the triggering
condition arrives and the moment when the triggering condition is fulfilled. More formally, it
is the interval between the youngest and oldest event enqueuing in the event set, which actually
triggers the task instance and is consumed by it. It is taken into account for gathering statistics,
when the instance starts. Remember that it is the interval between enqueuings, and not between
enqueueing and start. TCC is zero when only one event triggers a task.

NTCC - Number of task starts, actually the same as TOTCA.

TOTTCC - Total waiting time of task for triggering condition completion This accumulates
from the end of the warm-up period until the end of the accounting period, i.e.

MAXTCC - Maximum of TCC.

This formula is valid with NTCC > 0.

MINTCC - Minimum of TCC.

TOTWTC = WTCi
i=1

NTC

�

AVGWTC =
WTC

NTC

i
i=1

NTC

�

TOTTCC = TCCi
i=1

NTCC

�

AVGTCC =
TCC

NTCC

i
i=1

NTCC

�

Simulation statistics 115

•
•
•
•
•

116

•
•
•
•
•

WP - Time interval between the youngest triggering event enqueued and the moment the task
started. It expresses the time waiting for available performers after the triggering condition is
true, and MAX INSTANCES may influence the result as well. For a task starting soon after
warm-up, it should be noted that the whole interval between enqueueing and start is taken, not
only the portion within the accounting period.

NTP - Number of task starts, actually the same as TOTCA.

TOTWP - Total task waiting time for performers availability. This accumulates from the end
of the warm-up period until the end of the accounting period, i.e.,

MAXWP - Maximum of WP.

This formula is valid with NTP > 0.

MINWP - Minimum of WP.

The task status is set to “Inactive” when the number of active instances of a task is 0, otherwise
- it is “Active”.

TI - Time moment, when task status changes from “Active” to “Inactive”.

TA - Time moment, when task status changes from “Inactive” to “Active”.

TIA - Current inactivity interval of the task. TIA = TA - TI. For the first and last intervals in
the accounting period, only the part overlapping the accounting period is taken.

NTIA - Number of intervals of task inactivity (i.e. the number of inactivity intervals in the
accounting period).

TOTIA - Total task inactivity time. This accumulates from the end of the warm-up period until
the end of the accounting period, i.e.,

MAXIA - Maximum of TIA.

TOTWP = WPi
i=1

NTP

�

AVGWP =
WP

NTP

i
i=1

NTP

�

TOTIA = TIA i
i=1

NTIA

�

Chapter 12

 The following formula is valid with NTIA > 0.

MINIA - Minimum of TIA.

Processing time is computed in a different manner for elementary tasks and transactions.

For elementary tasks

- the counting mode is 2, i.e. all task instances starting in the accounting period are counted,
namely, at the moment when they start;

- the processing time is simply the duration attribute value for the instance (if it is defined by
a formula, it is always evaluated the start). Even if the task end is after the session end, the
complete duration is taken.

For transactions

- the counting mode is 3, i.e. all transaction instances ending in the accounting period are
counted, at the moment, when they end

- the processing time is the interval between the instance end and start (even if the instance has
started before warm-up), this value is also the duration value for transactions.

It should be noted, that such a definition yields the expected average values of instance time.

PT - Current processing time of the instance (see above).

TOTPT - Total processing time of task.

(more precisely, the upper index in TOTCA for elementary tasks and TOTCC for transactions)

MAXPT - Maximum of PT.

(for elementary tasks). For transactions, TOTCC is used instead. This formula is valid with
TOTCA > 0 (TOTCC>0, respectively).

MINPT - Minimum of PT.

AVGIA =
TIA

NTIA

i
i=1

NTIA

�

TOTPT = PTi
i=1

TOTCA

�

AVGPT =
PT

TOTCA

i
i=1

TOTCA

�

Simulation statistics 117

•
•
•
•
•

118

•
•
•
•
•

COST - Cost of current task instance (taken as defined by the language semantics for elementary
tasks and transactions, respectively).

TOTCOST - Total costs of a task. This accumulates from the end of the warm-up period for
tasks ending in the accounting period.

MAXCOST - Maximum of COST.

This formula is valid with TOTCC > 0.

MINCOST - Minimum of COST.

ATTR - The value of attribute attr of the current task instance (elementary or transaction), the
actual attribute name is visible in the corresponding table column. It is any of the user defined
task attributes having a numeric or Duration type. Attributes of tasks or transactions to be
processed in this way are defined within session parameters. All attributes selected in session
parameters for default processing appear in the same table, the attribute name is just one of the
columns. A display of the value of one attribute for all tasks may be obtained via appropriate
ordering.

The attribute values are computed at the instance end, both for elementary tasks and
transactions. For transaction attributes involving vertical operations (see 7.4), their internal
accumulation is completed at that moment and the obtained value is passed for statistics
processing.

TOTATTR - Total of ATTR of task. This accumulates from the end of the warm-up, for all
instances ending in the accounting period.

Only the defined (i.e., non-NULL) values are accumulated.

MAXATTR - Maximum of ATTR

TOTCOST = COSTi
i=1

TOTCC

�

AVGCOST =
COST

TOTCC

i
i=1

TOTCC

�

TOTATTR = ATTR i
i=1

TOTCC

�

Chapter 12

ATTR i
i=1

TOTCC

�

This formula is valid with TOTCC > 0.

MINATTR - Minimum of ATTR.

12.4 Statistics on performers

This kind of statistic is computed for each separate element of the ORG diagram. In the case of a
subtree in ORG referenced more than once, the ORG diagram is considered to be expanded in the
standard way. Qualified names are available to distinguish all element occurrences.

Actually only these ORG elements define a row in the statistics table, which are referenced at
least once in a performer expression of an elementary task. It is so because only these performers
have had a chance to be used for a task. In particular, it means that organizational units, which
at best, appear as performers for high level complex tasks, as a rule will not appear in statistics
table.

Statistics items are defined in a style similar to that for task statistics, using formal variables.

The previously mentioned modes have a similar meaning for performers as for tasks. Formally
for performers the dynamics, idle/usage time and performer seizing/releasing, play the role of
task start/end. But these two kinds of activities are always uniquely coupled, so one can think
also in terms of task start/end for performer statistics modes.

When speaking of performers utilization, average and minimum seized instances and idle time,
only the availability periods of the given performer, which lie inside the accounting period, are
taken into account. The periods where the performer is unavailable are simply excluded from
statistics. Performers are counted only for elementary tasks.

AVGATTR =
TOTCC
Simulation statistics 119

•
•
•
•
•

120

•
•
•
•
•

AVLNP - This value is defined in the GRAPES-BM ORG-Diagram. “Infinite” value is implied
for multiple performers without a number specification. For single performer the value is one.

TAV - total availability time for the performer inside the accounting interval.

Table caption Columns Variable Mode

Dynamic of
Performers

Performer

Available number of instances

Total number of times seized

Maximum of simultaneously seized instances

Average of simultaneously seized instances

Minimum of simultaneously seized instances

Performers utilization (%)

Productive performers utilization (%)

AVLNP

TOTSE

MAXPI

AVGPI

MINPI

UTILP

UTILPP

1

1

1

1

1

1

1

Waiting time of
the tasks for the
performer

Performer

Total waiting time of tasks for the performer

Maximum waiting time of tasks for the performer

Average waiting time of tasks for the performer

Minimum waiting time of tasks for the performer

TOTTW

MAXTW

AVGTW

MINTW

2

2

2

2

Performers
idle/usage time

Performer

Total idle time

Maximum idle time

Average idle time

Minimum idle time

Total usage time

Maximum usage time

Average usage time

Minimum usage time

TOTITP

MAXITP

AVGITP

MINITP

TOTUS

MAXUS

AVGUS

MINUS

1

1

1

1

1

1

1

1

Table 12-2: Statistics of Performer
Chapter 12

NCUI - The current number of performers used. It is set to the actual value at TWARMUP.

TSR - The time expired since the last performer seizing or releasing.

CPI - Cumulative performer_time. It is calculated after each performer seizure or release via
multiplying NCUI by the value of TSR and adding the result to the current value of CPI. In
the same way as for task activations, for the first seize/release after TWARMUP the shortened
TSR value is used, and at end of session the last special interval is used.

AVGPI - It is calculated by dividing CPI by the current value of TAV. Namely this way the
averaging occurs only over availability periods.

MINPI - It is the minimal value of NCUI since the end of warm-up period. Only values of
NCUI during availability periods are taken into account.

MAXPI - It is the maximal value of NCUI since the end of warm-up period.

TW - The current time interval between the moment a task's triggering condition becomes
TRUE and when the task's performer expression becomes TRUE. More formally, it is the
interval between the actual task start moment and the “youngest” event enqueueing time in the
event set triggering the given task instance. The value of TW is the same as WP in task statistics
- waiting for performers. Only the derivation of TW is quite different. It is gathered for
performers actually seized for the task instance, i.e., in case of OR in the performer expression,
the other possible performers don’t participate in the statistics. But the accumulation moments
are the same as for tasks - each start of the task in the accounting period.

TOTCP - number of seizures of the performer, i.e. the number of times within the accounting
period, when the performer participated in a task start.

TOTTW - Total task waiting time for performers to become available This accumulates from
the end of the warm-up period until the end of the accounting period, i.e.

MAXTW - Maximum of TW.

This formula is valid with TOTCP > 0.

MINTW - Minimum of TW.

TOTTW TW= i
i=1

TOTCP

�

AVGTW
TW

TOTCP
=

i
i=1

TOTCA

�

Simulation statistics 121

•
•
•
•
•

122

•
•
•
•
•

A performer which corresponds to a multiple element in the ORG diagram, actually represents
a group of non-distinguishable performer instances which may be allocated to one or more
tasks. When a performer instance is allocated to a task, its status is changed from “Idle” to
“Busy”. The number of available performer instances is specified in the ORG-Diagram. For a
single performer there is only one instance.

T8 - Time moment, when the last “Busy” performer instance status is set to “Idle”, i.e. all
instances of this performer element become free.

T9 - Time moment, when the first “Idle” performer instance status is set to “Busy”.

D10 - the length of the unavailability period for the given performer between T8 and T9. If the
performer is available from T8 to T9, then zero.

TPI - Current idle time of performer. TPI = T9 - T8 - D10 (i.e., the period when none of
instances is busy, but the performer is available).

NPI - Number of intervals of performers inactivity.

TOTITP - This accumulates from the end of the warm-up period until the end of the session.

MAXITP - Maximum of TPI.

This formula is valid with NPI > 0.

MINITP - Minimum of TPI.

T3 - Time moment, when a task instance starts.

T4 - Time moment, when a task instance ends

TT - Processing time for a task to which the current performer is allocated, TT = T4 - T3 (the
same as PT)

NTA - Number of intervals of performers usage.

TOTITP = TPIi
i=1

NPI

�

AVGITP =
TPI

NPI

i
i=1

NPI

�

Chapter 12

TOTUS - Total performer usage time. This accumulates from the end of the warm-up period
until the end of the session. The given TT is accumulated for any performer which is actually
used for the given task instance.

MAXUS - Maximum of TT.

This formula is valid with NTA > 0.

MINUS - Minimum of TT.

This formula is valid for performers whose number of available instances is specified in the ORG
diagram (including single performers), otherwise UTILP has NULL value.

UTILPP is similar but takes into account also FOR percentages. i.e., each TT is multiplied by
the corresponding FOR-percentage during the gathering of UTILPP.

12.5 Statistics on events

All automatic statistics on events in GRAPES-BM is related to input queues. There are statistics on

- length of queues

- event location time in queues

- intervals between event arrivals.

No special statistics are available on event sending, since for each task sending an event there is
a task receiving this event.

There is a table row in the statistical reports for each existing event queue in the expanded model
tree (Sections 11.1 and 11.2), i.e. the table row is uniquely determined by

- BP name

TOTUS = TTi
i=1

NTA

�

AVGUS =
TT

NTA

i
i=1

NTA

�

UTILP =
TOTUS

TAV AVLNP
100%

∗
∗

Simulation statistics 123

•
•
•
•
•

124

•
•
•
•
•

- task name

- qualified task name (like as far task statistics)

- event name

The qualified task name is necessary in case of several occurrences.

The modes for event statistics have different meaning - event arrival in the queue plays the role
of task start, and event departure - that of the task end.

Table Caption Columns Variable Mode

Lengths of queues
of events

Task name

BP name

Event name

Maximum queue length

Average queue length

Minimum queue length

MAXQL

AVGQL

MINQL

1

1

1

Events location
time in the queue

Task name

BP name

Event name

Total events arrived

Total events left

Maximum event location time in the queue

Average events location time in the queue

Minimum events location time in the queue

TEA

TEL

MAXELT

AVGELT

MINELT

2

3

1

1

1

Chapter 12

NEIQ - The current number of events in the queue. It is set to its actual value at TWARMUP.

TSLQE - The time since last queue activity. It is the time expired since the last event arrival or
departure in/from queue (or since TWARMUP for the first queue activity).

CETIQ - Cumulative Event-time in queue. It is calculated after event arrival or departure as
NEIQ multiplied by value of TSLQE and the result is added to the current value of CETIQ.

At session end the last NEIQ multiplied by the last time interval is added.

AVGQL - Average queue length. It is calculated by dividing CETIQ by the current value of
(TNOW-TWARMUP).

MINQL - Minimum queue length. The minimal value of NEIQ since the end of warm-up
period.

MAXQL - Maximum queue length. The maximal value of NEIQ since the end of warm-up
period.

TEA - Total number of events arrived since end of warm-up period.

TEL - Total number of events that have left the queue since end of warm-up period.

EAT - Event arrival time in queue.

EDT - Event departure time in queue.

ELT - Event Location time in queue. ELT = EDT - EAT.

AVGELT - Average event location time in the queue. It is calculated by dividing CETIQ by the
current value of TEA. This formula is valid with TEA > 0. The computed average value
completely corresponds to the expected average event location in queue, when there are few
events in the queue at TWARMUP moment and few at session end. The value is reasonable also

Time intervals
between event
arrivals in queue

Task name

BP name

Event name

Events count

Maximum of time intervals between events

Average of time intervals between events

Minimum of time intervals between events

EC

MAXINT

AVGINT

MININT

2

2

2

2

Table Caption Columns Variable Mode

Table 12-3: Statistics of Events
Simulation statistics 125

•
•
•
•
•

126

•
•
•
•
•

in cases where there are many events remaining in queue at session end. But the value of
AVGELT may be higher than the intuitive value when a significant amount of events are in
queue at TWARMUP. (There is no ideal formula for all cases).

MINELT - Minimum events location time in the queue. The minimal value of ELT since the
end of warm-up period.

MAXELT - Maximum event location time in the queue. The maximal value of ELT since the
end of warm-up period.

LET - Last event time;

CET - Current event time;

INT = CET - LET; (for the first event after TWARMUP INT = CET - TWARMUP)

MAXINT - Maximal of INT;

;

This formula is valid with EC > 1.

MININT - Minimal of INT.

EC - total events arrived in the accounting period

12.6 Use of transactions for user defined statistics

Currently these statistics are predefined. Only the statistics items corresponding to the
predefined formulas may be obtained. For example, the automatic statistics facilities does not
permit to obtain an empirical distribution of some task attribute value, or the graph of some
variable over time. The only way to define some non-standard “automatic” processing is via
transaction attributes (see 7.4). Their formulas may reference via vertical operations the selected
attributes of elementary tasks in an arbitrary way. Certainly, all other values must be transformed
to task attributes beforehand.

The simplest way to use the obtained transaction attributes again is to apply default task
attribute statistics to them (total, max, min, avg, see 12.3).

An alternative is to record the transaction attributes in a textual simulation trace. For example,
the end of task elementary activity for the given transaction should be recorded together with the
attribute values. Then the trace is to be imported into Excel. Any statistical processing, e.g.

AVGINT =
INT

EC- 1

i
i=1

EC-1

�

Chapter 12

obtaining an empirical distribution or building the line graph of some variable over time can
easily be performed there. See more on it in GRADE Simulation Tutorial, sections 6.5 and
7.6.2.

There is no automatic statistical processing for global variables. In order to apply cost-like
predefined formulas, copy the value of a variable at appropriate moments to a task attribute
defined for this purpose. But any user defined statistical processing for global variables can be
programmed directly via appropriate assignments, see more in section 14.
Simulation statistics 127

•
•
•
•
•

128

•
•
•
•
•

Chapter 12

13

Chapter 13
Class diagrams

Class (CL) diagrams are used in GRAPES to support the Object Modeling Technique (OMT)
by J.Rumbough et al [3]. In general, the graphical syntax of the new Unified Modeling
Language (UML) [4] - the current successor to OMT is supported as well. More precisely, a
precise subset of UML 1.0 is implemented. Only for association cardinalities is an alternative
notation is also provided.

Class diagrams in GRADE are used for describing the overall static structure of a business
system. Class diagrams could be used as the initial modeling approach, with a “proper” business
modeling following it. Any type of object in a business system may initially be represented:
organizational units, individual performers, tasks to be performed, data manipulated by them
etc. The is part of relationships facilitates the static structuring of all these objects, other
associations may show any links between these objects.

Figure 13.1 is an example of a class diagram for the high-level view on order processing at the
hypothetical Autoparts trading company.
129

•
•
•
•
•

130

•
•
•
•
•

Figure 13-1: Example of a class diagram.

Here the upper parts of the diagram represents a rough organization structure of the company.
The lower part represents various documents and physical objects used within the company. See
the order subclasses representing the order “life-cycle” in the company. Associations are used to
show how personnel interact with documents.

Class diagrams may contain the following elements:

• class symbol

• binary associations

• ternary (N-ary) associations

• is part of (aggregation) relationship

• is subclass of (generalization) relationship

• dependency relationship

• note symbol and anchor line

• object symbol

In general, there are no strict requirements on the element syntax details, but some guidelines
should be adhered to, in order to make the diagrams readable to others.

Vice
President

Sales

Salesman
Associate

VP

Product

Sales
Department

Quality
Tester

Filled
Order

Approved
Order

Customer

Order

New
Order

Warehouse personnel

Invoice

High Value
Autoparts
Company

Salesman

Rejected
Order

Waybill

Clerical staff

Manufacturing
Operations

Dept

Invoice is sent
also to Finance dept

places
receives

receives

for

packs and ships

for

tests
is vetted by is approved by

receives

for

is reviewed by is filled by

assigns
creates

prepares

receives
Chapter 13

A class is represented by a box which may have as many as three compartments.

Only the class name is mandatory, all other elements of a class are optional. The stereotype,
written in double angular brackets, is used to define the class type, e.g. <<control>>, <<software
component>> etc.

If neither attributes nor operations are present, the two lower compartments are omitted:

Other combinations are also possible:

Normally attributes have no formal syntax. The syntax recommended by UML is one attribute
per line, in the following form:

visibility name:type = initial_value

Only the attribute name is necessary, all other elements may be omitted. In the modeling
context usually only the name is present. Visibility has one of the fixed values - public (coded as
+), protected (#) or private (-), or non-specified. Type may be a visible GRAPES data type or any
name which makes sense in the given modeling context. The initial value of an attribute is any
constant which makes sense, normally it is omitted. Example: + size: INTEGER

Similarly, in object modeling operations are just the names of the operations the class can
perform, one per line. According to UML, a more formal operation specification may also be
used, in the following syntax:

visibility operation_name (parameter_list):value_type

class_name
<<stereotype>>

informal_description
attribute1
attribute2
...

operation1
operation2
...

class_name
<<stereotype>>

informal_description

class_name
<<stereotype>>

informal_description
attribute1
attribute2
...

class_name
<<stereotype>>

informal_description
operation1
operation2
...
Class diagrams 131

•
•
•
•
•

132

•
•
•
•
•

Visibility is the same as for the attributes. Parameter list is a comma separated list of parameters
in the form

kind name type

where kind is one of in, out, inout or non-specified. Any other information may be added to
operation specification, if necessary.

Example of operation:

store (inout item: T_order_line, mode: T_mode): T_order

Associations establish relationships between classes. Binary association links two classes and may
have two optional role names

Both ends of an association (both roles) have a cardinality. The cardinality may be specified in
the traditional E-R style (in a way, close also to the original OMT style):

An alternative style is to use the pure UML notation for cardinalities, in the textual form m..n:

0..1

1..1 (or 1)

0..* (or *)

1..*

(m..n) (e.g. 1..10)

For example,

Notation Meaning

Zero or one (0..1)

Exactly one (1..1)

Zero or more (0..N)

One or more (1..N)

Unspecified

Table 13-1: Graphical notations for cardinalities

class1 class2
rolename1

rolename2
Chapter 13

is the same as

Normally, if the UML style is used, the unspecified graphical cardinality is used, but it is not
forbidden to use both notations simultaneously.

The meaning of a binary association can be paraphrased using simple natural language
sentences. For example, the binary association

can be read either as

“A customer has one or more accounts”

or as

“An account belongs to exactly one customer”.

The first sentence is obtained by reading the association from left to right (using the role name
has and cardinality 1..N. The other is obtained by reading the association in the opposite
direction. Note the appropriate placement of role names (always to the left, if moving away from
the source, i.e., the subject of the sentence). This placement is normally ensured by the editor.

Ternary (and N-ary) associations use the N-ary association symbol.

The association lines linking the association symbol to the class symbol also have role names
and cardinalities. Any of the cardinality styles may be used.

class2class1
role1

role21..1

0..*

class2class1
role1

role2

customer account
has

belongs to

class1 class2

class3

role1

role2

role3
Class diagrams 133

•
•
•
•
•

134

•
•
•
•
•

The aggregation or is part of relationship is defined by a special aggregation line (containing a
small diamond). The two forms are equivalent.

The diamond is always placed at the aggregate end. Cardinality of parts may be shown the same
way as for associations.

Generalization is the relation between a class (a superclass) and one or more specialized versions
of the class (subclasses). The two forms are equivalent:

The dark arrowhead always points to the superclass.

All lines can also have remarks (a sort of semiformal comment) attached. Associations have
remarks at each of the ends, aggregation and subclass relationship also may have two remarks.

The dependency arrow expresses some sort of dependency between classes:

The only line text here is one remark.

The note symbol contains any informal text, which may be linked via anchorline to a:

- class

- association symbol

Part
class1

Aggregate
class

Part
class1

Part
class1

Part
class1

Aggregate
class

subclass1 subclass2

superclass

subclass1

superclass

subclass2

cass1 class2
Chapter 13

- another note

Consequently, note may be used to express various semiformal properties of class diagram
elements by linking to them. Namely, this linking distinguishes a note from a free comment,
which has no lines attached. An anchorline may have a text attached to it.

Another kind of the anchorline (of a slanting style) links symbols (class or note) to an existing
line (association, aggregation, subclass). It can be used to express additional UML features:

• association class

The class salary describes the properties of the association; it is linked to the association
symbol (the solid line) by an anchorline

• Some dependency between several associations for the same class, e.g. the exclusiveness.

The account here may belong either to a person or to a company. The OR keyword (according
to the UML syntax) in the note is attached via anchorlines to both associations. The
dependency may involve more than two associations. Other semiformal properties of
associations, aggregations etc. (called constraints in UML) may also be represented in this
syntax.

class Notes

company

salary

employee
employs

is employed by

account

person

company

{OR}

belongs to
owns

belongs to

owns
Class diagrams 135

•
•
•
•
•

136

•
•
•
•
•

In addition to class symbol, CL diagram may contain also an object symbol. An object
represents a particular instance of a class. It has the following syntax:

The name compartment shows the name of the object and its class, both underlined, with the
colon as a separator. The name of the object may be omitted, then the symbol represents an
anonymous object of a class. An object without class has no semantic meaning. The stereotype,
if present, must be the same as for the corresponding class.

The attribute section contains the attribute values. The attribute list should be the same as for
the corresponding class. The syntax for an attribute is:

attribute_name:type=value

The type is redundant since the class already shows it and frequently is omitted.

Associations linking object symbols are called links. They have the same syntax as normal
associations, except that cardinality is not shown:

The role names of links should match the role names of the associations between the
corresponding classes.

If a class diagram contains both class and object symbols, then only the dependency relationship
may connect a class symbol to an object symbol.

Typically, object symbols appear in a separate CL diagram where there are no class symbols.
Such a diagram is called an object diagram. An object diagram normally is placed under the class
diagram where the corresponding classes are defined, to ensure the visibility of class names.

No formal syntactic analysis is provided for CL diagrams.

The CL diagram can be converted to its business model equivalents, which form the starting
point for detailed business modeling. Namely, an initial ORG diagram may be built on the basis
of aggregation relationships. If there are aggregations between date elements, same initial DD
diagrams may also be obtained.

object_name:class_name
<<stereotype>>

attribute1
attribute2
...

ob1:Class1

attribute1 = 3

ob2:Class2

attribute2 = 5

role1

role2
Chapter 13

The greatest value of the CL diagram however is in its autonomous use as a good initial system
description.
Class diagrams 137

•
•
•
•
•

138

•
•
•
•
•

Chapter 13

14

Chapter 14
Global variables

Global variables in GRAPES-BM is a simulation-oriented feature. Global variables are used to
maintain and change the data or numeric attributes of some material or register during
simulation, or to cumulatively gather statistics. Typically, this might be used to control
complicated manufacturing procedures e etc. which depend on the current level of stocks of
some product, the cash available, restocking periods etc. It is typical in such systems, that the
values of “control variables” are set and read by many different tasks.

Another case for using variables is when working with a large number of similar items, e.g.
various product subtypes in manufacturing. Here an essential point is that global variables are
the only data elements in GRAPES-BM where arrays can be used. Access to array elements is
similar to that in traditional programming languages. A similar situation occurs when working
with a large number of related constants, e.g. a processing time for each product subtype. Global
variables can also play the role of constant arrays, which cannot be realized using the SPs alone.
For simulation purposes, the actual values of constant arrays can be imported from file (e.g.,
from Excel) immediately prior to simulation.

Global variables also serve the function of creating statistics according to any user defined
statistics formulas, beyond what the standard statistics that GRADE provides by default.

Global variables should not be used for high-level modeling of interaction between manual tasks
and IT-related tasks in a business system. Data objects and data stores yield a more readable
description of data flows in a system.

The global variable facility in GRAPES-BM consists of

• Variable Table (VT) defining the variables

• assignment section in tasks

• referencing of variables in GRAPES-BM expressions.
139

•
•
•
•
•

140

•
•
•
•
•

14.1 Variable table and relevant data types

Variable Table (VT) is used to declare all global variables in a business model. There is only one
VT per model, and it is placed in the top row of the model tree, beside the other global tables:
ET, SP and CMP.

VT contains a row for each variable. The columns which are always used are Name and Data
type. The Value column is currently being ignored even if a value is set in it. The “additional”
columns made invisible by default column settings for VT should not be used at all in the
context of GRAPES-BM. Fig 14.1 shows an example of VT table.

Figure 14-1: Example of VT table

The following data types may be used in the Data type column

• elementary types Integer, Float, Duration, Time

• user defined array types with elements being of one of the permitted elementary types

• record types with the same restrictions on field types

• arbitrary nesting of array and/or record type constructs, with the same restrictions on
elementary fields

The relevant array and record types must be defined in one of the DD diagrams of the model.
Bounds of an array may be non-negative integers or integer constants taken from the SP table.
Fig. 14.2 shows some of the data types referenced in the VT from Fig. 14.1.

Back_order_list Rec_array

I INTEGER

Matrix Two_dim_array

Order T_Order

Order_delay DURATION

Product_stocks Int_array

Reorder_point Int_array

Category: Variable

Name: Data type: Value: Description:
Chapter 14

Figure 14-2: Data type definitions for variables

Two-dimensional arrays may be defined as arrays of arrays (Two_dim_array in Fig. 14.2), or as
direct two-dimensional arrays.

14.2 Assignment section in tasks

The assignment section in a task may contain one or more assignments of the form:

variable:=expression;

(the assignment symbol typical to Pascal or GRAPES PD diagrams is used).

The variable must be one of the variables defined in the VT. If the variable is an array or record,
one elementary field must be selected by qualification:

Product_stocks[1]

Matrix[I,3]

Order.quantity

Back_order_list[I].quantity

See more on the qualification syntax in the next section.

There are no aggregate assignments in GRAPES-BM.

The standard type compatibility rule applies - the expression must have the same type as the
variable, except that an integer expression may be assigned to a float variable. An array index
expression must have the integer type.

The expression may contain any values visible inside a task - variables, the task attributes, fields
of incoming events, SP elements.

T_Order

INTEGER
Product_type

INTEGER
Quantity

Int_array

INTEGER

1..10

Two_dim_array

Int_array

1..10

Rec_array

T_Order

1..10
Global variables 141

•
•
•
•
•

142

•
•
•
•
•

Examples of assignments:

I:=1;

I:= I+1;

Product_stocks[I]:=0;

Product_stocks[I+1]:= Product_stocks[I]+Supply.quantity;

Assignments of a task normally are entered in the task symbol in a BP diagram, the editor copies
them automatically to the corresponding TD diagram. Any modifications are also copied
automatically, in the same way as e.g. for triggering conditions. The same issues of consistency
between BP and TD apply also for assignments. Note though, that any syntax errors - invalid
expression structure, type incompatibility etc., are reported only in the corresponding TD
diagram NOT in the BP diagram.

The semantics of the assignment section is the following:

• When a task instance ends, the attribute values (if any) are computed.

• Then assignments in the section are executed, one by one, in the specified order.

Any modification of a variable value is taken into account for the next assignments. The
assignment group is never interrupted by another task instance.

The global nature of variables must always be taken into account. If two task instances use the
same variable, the value assigned by the instance which ends the first is used by the instance to
end the next.

The initial value of all variables is undefined (NULL), therefore all accumulating variables such
as counters, totals etc. must be explicitly initialized (typically with a “0” value, in the case of
counters).

14.3 Use of variables in other GRAPES-BM components

Global variables from the VT are available in any expression in a business model diagram, i.e. in:

• decisions

• event field setting statements

• task attribute setting statements in TDs

• duration expressions

• WHERE expressions for triggering

They cannot be used in so-called “constant expressions” such as event transfer time
specifications.
Chapter 14

GRAPES-BM has only expressions of type integer, float, duration and time, therefore only
appropriate elementary values from variables may be used. Array or record variables must be
qualified via index values in square brackets or field names up to the level of elementary values
(as in assignments). Two-dimensional arrays may be qualified in two different ways:

Matrix[1][3] is the same as Matrix[1,3].

Any valid integer expression may be used as an index value.

The value of the variable at the moment of expression evaluation is always used. Due to the
concurrent nature of task activation it cannot be expected, that variable values set by one task
instance will be available to the instance logically following this first one, if another concurrent
task instances can also make assignments to the same variable. Note that here also there are two
guiding rules:

• assignments of a task instance are never interrupted by another one

• a decision or set-option referencing a variable set by the preceding task’s assignment section
always gets the value which was set when all assignments in the section were completed.

Thus the “value integrity” within a complete task instance is achieved. If a variable value has to
be “guarded” over a group of consecutive task instances (e.g. a fragment of a transaction) from
a rival group of equivalent tasks, a special sequentialization of the relevant tasks (“group
headers”) has to be achieved via:

• assigning fictitious performers to one instance

• using the value MAXINST=1 for such tasks

• introducing small fictitious durations (“1s”) for some tasks, otherwise there is zero duration.

See more on this topic in the GRADE Simulation Tutorial.

Another special issue is the use of variables in the triggering condition, i.e. in WHERE options.
A triggering condition

(ev WHERE var1>=const)

where var1 is a global variable is completely valid. The semantics are such that at the moment
when ev arrives the “enabling condition” var1>=const is checked. If it is true, the task is
triggered. Otherwise no further check of the value of var1 is performed, only at the moment
when the next instance of ev arrives (no “watch” is set for the variable var1 to “look for” or “wait
for” the required value as a result of actions performed by other tasks).

We conclude the section with an example of a BP where global variables are used (see Fig. 14.6).
The fragment represents part of a description of a simplified warehouse stock management
process. The array Product_stocks has to be explicitly initialized at the start of simulation - this
is done by the subordinated BP Initialize_stocks (see Fig. 14.7). The constant array Reorder_point
is assumed to be imported as a file prior to simulation. Fig. 14.3 shows the relevant variables,
Fig. 14.4 - the data type definitions and Fig. 14.5 - the event table.
Global variables 143

•
•
•
•
•

144

•
•
•
•
•

Figure 14-3: Variable table

Figure 14-4: Data type definitions

Figure 14-5: Event table

I INTEGER

Product_stocks Product_array

Reorder_point Product_array

Category: Variable

Name: Data type: Value: Description:

Product_array

INTEGER

1..10

T_Order

INTEGER
Product_type

INTEGER
Quantity

At_system_start Timer TIME(START_TIME)

Order Message T_Order

Regularly Timer REPETITION(
EXPONENTIAL("1h"))

Rejected_order Message T_Order

Supply Message T_Order

Event name: Category: Data type: Description:
Chapter 14

Figure 14-6: Example of BP using variables

Some of the Decision statements, such as the “yes” branch under “Order_fillable” can be
understood from the context, and that the Assign statements such as the one found in
“Register_supply” are also somewhat intuitively obvious. Counters, initialization and control
constructions (See Fig. 14.7) are driven by control requirements of the global variables such as
the requirement to initialize a given stock level for other tasks to work with, such as task
“Register_Supply” which adds new stock.

yes
Order.Quantity
<= Product
_stocks[Order
.Product_type]

no
ELSE

Purchasing

Register_supply
Sales_dept
Product_stocks[Supply
.Product_type]:= Product
_stocks[Supply.Product_type]
+Supply.Quantity

Time_to
_replenish
Sales_dept

Create
_order

Customer

Order_fillable
Sales_dept

no
ELSE

Order
_processing

Initialize
_stocks

Archive
_order

Sales_dept

yes
Product_stocks
[Order.Product_type]
< Reorder_point
[Order.Product_type]

Purchasing

Order
_processing

Supply

Regularly

Order

Order

Order

Rejected_order

Order

Order

Order
SET Product_type
=UNIFORM(1,10);
Quantity=UNIFORM(50,100);
Global variables 145

•
•
•
•
•

146

•
•
•
•
•

Figure 14-7: Subordinated BP called Initialize_Stocks

yes
I<=10

no
ELSE

Loop_body
Product_stocks[I]:=0;
I:=I+1;

Continue_loop
OR

Initialyze_loop
I:=1;

At_system_start
Chapter 14

Index

A
Access paths 56

in BP diagrams 67
Access Table 56
Aggregation 134
ALL operator 41
Alternatives (for Tasks) 50
Anchorline 134
array types 140
Assignment section 141
assignments 141
AT 56
ATR 21
Attribute table 21
Automatic generation

of BP from TDs 77
of TDs from BP 75

Auxiliary Diagrams 6
Availability

of ORG element 14

B
Binary association 132
BM diagram 6
BP 59
Business Process Diagrams 59

display options 69
links between levels 72
structure of 68

C
Category

of event 25
Class diagram 129
Class symbol

attributes 131
class symbol 130
CMP 20
Comment Symbol

in BP diagrams 67

Competence
of ORG element 16

Competence table 20
Complex events 29, 68
Complex tasks 33
Compound Performers 47
Consistency 78
Consistency checker 79
constant arrays 139
Control flow events 44
Cost

as an attribute of a Task 48
as an attribute of a Task in Simulation 118
of ORG element 16

D
Data expressions 97
Data objects 56, 65
Data stores 56, 65
Decision semantics 52
Decision symbols 51, 65
Decision tasks 33
Default

value of the attribute 22
Deleting unused events 76
Dependency 134
Duration constants (data expression) 98
Duration of Tasks 48
Dynamic Performer Selection 45

E
Efficiency level

of ORG element 13
Elementary tasks 33
Employee name

as attribute of ORG element 16
END option for transaction control 86
ET 25
Event attributes 25
Event Consumption 40
147

•
•
•
•
•

148

•
•
•
•
•

Event longevity 30
Event Routing 73, 104, 108

diagnostics 104
Event semantics 30
Event statistics from Simulation 123
Event symbol in BP diagrams 66
Event Table 25
Event types 26
EXCLUSIVE option in decisions 52
External task symbol 62
External tasks 55

F
Float constants 97
Formulas 99

in User defined attributes 22
formulas

in decisions 51

G
Generalization 134
Global variables 139

use of 142

H
Hierarchy 6

I
Inheritance

of Attributes by ORG elements 19
Input events

spontaneous generation 55
Integer constants 97
Is_triggered_by function for decisions 52

L
Layouts

of BP diagram 69
Limiting the number of Task Instances 50
List constant 99

M
MAX INSTANCES 50
Merging condition 82
Model development 75
Model Structure 6
Model tree 6

N
Named constant 95
NOSTART option for transaction control 84, 86

Notational Conventions 4
Note 134
NOTID option for transaction control 87
Number of instances

of ORG element 14

O
Occurence tag of task in BP 61
Operations with Data 99
Order of Diagram creation 75
ORG Diagram

Structure of 17, 19
ORG diagram 11
ORG elements

Attributes of 13
Organizational structure 11
Organizational unit 12
Output events of task 53

P
PERFORMER Expression

Semantics of 47
PERFORMER expression 45

statistics on performers in Simulation 119
Performer expression 61
PERFORMER Selection

Syntax of 45
Performer Selection 45
Persistence of Events 26
Position 12
Primary tasks 59
Priority 48
Priority of Tasks 48
Probablistic Decisions 52

R
Referenced external task 64
Referenced task 33, 35, 59, 63
Referenced timer symbol 35, 64
REPEAT option in output Events in TD Diagrams

53
Repetition Function for Timer Events 29
Resource 12

S
Seizure of Performer 47
SET option in output statements in TD Diagrams

53
Show box 67
Simulation

accounting period 110

background preparation for 103
Semantics of 103
warm-up period 110

Simulation Parameters 95
Simulation Statistics 109
SP Table 95
Spontaneous generation of events in TD 55
START option for transactions 85
Start time function for Events 29
Statistics 109
String constant 99
Subclass 134

T
Tabular view of BP Diagrams 69
Task body 38
Task contents 38
Task Details diagram 33
Task Duration 48, 61
Task outputs in TD diagrams 53
Task Priority 48
Task visibility 9
Tasks

external 55
interaction of primary tasks 91
referenced 63
reuse of 93
simulation statistics on 112

TD 2
TID 83
Time constants 98
Time specificationin timer definition 27
Timer Events

definition of 27
semantics in simulatable models 105, 106
substituted by input events of Tasks 55
syntax of 27

Timer Symbol 62
Transactions 81

and user defined statistics in Simulation 126
attributes of 88
controling the behavior of 84
description of default behavior 81

Transfer time of Events 27
transfer time of Events 66
Transformation tasks 33
Triggering Condition

Semantics of 42
Syntax of 41

Triggering condition 40, 61
semantics in simulation 106

U
Unused Events 76
User defined attributes for tasks 21, 49
User defined attributes of Tasks

calculation of in Simulation 118
User defined statistics 126
User defined task types 21
User defined tasks 21

V
Variable Table 140
Visibility rules 9

W
Warm-up period 110
WHERE operator 41
 149

•
•
•
•
•

150

•
•
•
•
•

References

[1] GRADE BM Version 4.0. Introductory Guide. INFOLOGISTIK GmbH, 1998.

[2] GRADE BM Version 4.0. Language Guide. INFOLOGISTIK GmbH, 1998.

[3] GRADE BM Version 4.0. Simulation Guide. INFOLOGISTIK GmbH, 1998.

[4] Rumbaugh et al. Object-Oriented Modeling and Design. Prentice Hall 1991

[5] Unified Modeling Language UML Notation Guide version 1.0.
Rational Software Corporation, http://www.rational.com January 1997
151

•
•
•
•
•

152

•
•
•
•
•

	Basic Concepts
	1.1 Notational conventions
	1.2 Identifiers in GRAPES-BM
	1.3 GRAPES-BM model tree
	1.4 Task visibility

	Organizational structure description
	2.1 Introduction
	2.2 ORG diagram
	2.2.1 Elements of the ORG diagram
	2.2.2 Attributes of ORG elements
	2.2.3 General structure of ORG diagram
	2.2.4 The formal semantics of ORG diagrams

	2.3 Competence table

	User-Defined Task Types and User-Defined Attributes for Tasks
	Event table
	4.1 General structure
	4.2 Timer definitions
	4.3 Complex events
	4.4 The semantic aspects of event behavior

	Task Details Diagram
	5.1 General form and role of TD diagram
	5.2 Referenced task symbols
	5.3 General contents of the task body
	5.4 Triggering condition
	5.4.1 Simple cases
	5.4.2 Syntax in general
	5.4.3 Semantics of triggering condition
	5.4.4 Control flows in triggering and semantics for occurrences

	5.5 PERFORMER expression
	5.5.1 Syntax of the performer expression
	5.5.2 Semantics of the performer expression

	5.6 Other elements of task body
	5.7 Decisions
	5.8 Output events
	5.9 Input events
	5.10 External tasks
	5.11 Data stores and data objects

	Business Process Diagram
	6.1 Role of BP diagrams
	6.2 Elements of BP diagrams
	6.2.1 Internal task symbol
	6.2.2 External task symbol
	6.2.3 Timer symbol
	6.2.4 Referenced internal task symbol
	6.2.5 Referenced external task symbol
	6.2.6 Referenced timer symbol
	6.2.7 Decision symbol
	6.2.8 Data symbols
	6.2.9 Event arrow
	6.2.10 Access path
	6.2.11 Auxiliary symbols
	6.2.12 Refinement of complex events

	6.3 General rules of BP structure
	6.4 Graphic layouts of the BP diagram
	6.5 Links between BP levels
	6.6 GRAPES-BM model development strategies and tool support for them
	6.7 The alternative way: from TDs to BP
	6.8 Formal consistency rules between BP and TD

	Transaction semantics of BPs
	7.1 The concept of the transaction
	7.2 Default behavior of transactions
	7.3 Transaction control facilities
	7.4 Attributes of transactions

	Additional structuring features of business models
	8.1 Interaction of primary tasks
	8.2 Independent tasks and the multiple use of tasks

	Simulation parameters and their usage
	Data in GRAPES-BM
	10.1 Constants
	10.2 Data Expressions
	10.3 Data type definitions in GRAPES-BM

	GRAPES-BM semantics for simulation
	11.1 Preparation for execution - tree expansion
	11.2 Event routing
	11.3 Starting the execution, timers
	11.4 Starting a task
	11.5 Ending a task
	11.6 Sending an event

	Simulation statistics
	12.1 General principles of automatic statistics gathering
	12.2 Statistics and warm-up period
	12.3 Statistics for tasks
	12.3.1 Definitions of variables

	12.4 Statistics on performers
	12.5 Statistics on events
	12.6 Use of transactions for user defined statistics

	Class diagrams
	Global variables
	14.1 Variable table and relevant data types
	14.2 Assignment section in tasks
	14.3 Use of variables in other GRAPES-BM components

	Index
	References

