[image: image1.png]AHveLotarts

class Persona;
class Student;
attr Persona.vards:String:
class Uznemuns;

assoc Persona.[1..+]darbalene)s/darbabeve3s(*] . Uznemus;
compos CompositeClass. [0..1]composite/parcs[+] .ParcClass;
rel Student.sunClassof.Persona;

MMDe£End,

[image: image3.jpg]EgERAF

Projekts VPD1/ERAF/CFLA/05/APK/2.5.1./000009

Jaunas paaudzes sistēmu modelēšanas rīka izstrāde

Projektu realizē:

Latvijas Universitātes aģentūra „Latvijas Universitātes Matemātikas un Informātikas institūts”

Projekta realizācijas laiks: 2006.gada 1.septembris – 2008.gada 31.augusts.

Projektu atbalsta Eiropas Savienība

Rīga, 2007.gada 28.februāris
Šis dokuments apraksta modeļu transformācijas valodu L0.

THE MODEL TRANSFORMATION LANGUAGE L0.

The purpose of this document is to give a definition of meta-model transformation language L0. This language is a rather low level procedural textual language, with control structures mostly taken from assembler-like languages (and syntax influenced by C++). The basic setting of L0 is as for any transformation language. We process a model which is an instance of meta-model (MOF style). But the language constructs which are specific to model transformations have been chosen as simple as possible.

Basically these constructs give programmer the ability:

· to iterate through instances (both links and objects),

· to create / delete objects and links.

· and to read / write (change) object attribute values.

Besides constructs which are specific to model level, there are constructs which are specific to meta-model level. These constructs gives programmer the ability:

· to dynamically create / delete / modify meta-model elements

· to iterate through meta-model elements

Meta-model definition

The first activity in the process of transformation program construction is the definition of a meta-model which is to be transformed. The definition of the meta-model is linked to the transformation program with useMM command(directive) which takes a file name as argument (MM definition file must NOT be named “meta-model.xml”) . This file contains a command sequence of the meta-model definition. Illustration of the meta-model definition file structure is given in Figure 1.

[image: image4.jpg]

 Figure 1.
It should be noted, that MM definition file can be supplied in an alternative(repository specific) coding. (In his case file must be named “meta-model.xml”.)

Following commands can be used to specify a meta-model:

1. class <className>;

-- Defines the class with a given <className>.

2. attr <className>.<attrName>:<ElementaryTypeName>;

-- Defines the attribute with a given name and type.

3. assoc <className>.{ordered}<card><roleName>/<roleName><card>{ordered}.<className>; -- Defines the association with specified attributes.

a. compos <compositeClassName>.{ordered}<card><roleName>/<roleName><card>{ordered}.<partClassName>; -- Defines the composition association between specified classes.

4. rel <subClassName>.subClassOf.<superClassName>;
-- Defines subClassOf relation.

5. enum <enumName>:{ <enumLiteral1> , < enumLiteral2>, … }; -- Defines enumeration with specified enumeration literals.
At the given point MM command for attribute specification is supported in a rather limited way. It is assumed, that there will not be a pair of attributes, such that attributes have equal names, but different types. (At the given point attribute definition is not class local, it has a global scope.)

While defining enumeration attributes, enumeration attribute name must be equal to enumeration name.

Transformation definition.

L0 transformation program consists of several units. There are two kinds of units: main units and complementary units.
The main difference between these is that main unit can contain reference to meta-model definition, while complementary units can not.
L0 unit consists of the following parts:

· reference to meta-model definition (this part must be absent in complementary units) (useMM directive)
· external subprograms declaration part (include directive)
· specifications of the location of used external libraries (useLib directive)
· specification of the location of complementary L0 units (useUnit directive)
· global variable definition part

· L0 subprogram definitions part (it is expected, that this part contains one subprogram which is labeled with a reserved word main. The function, which is labeled with this reserved word defines the entry point of the transformation program.) L0 subprogram definition also consists of several parts:

· Subprogram header

· Subprogram local variable definitions

· Keyword begin;
· Subprogram body definition

· Keyword end;
Illustration of L0 transformation program structure is given in Figure 2.

[image: image2.png]transformation <transformationName>;
useMd <fileName>
include <fileName>

useLib <fileName>
uselUnit <fileName>

//global vars;
pointer cl : Classl;
pointer c2 : Class2;

var i : Integer;
var s : String;

procedure p(s : String , ¢ : Classl);

var i_loc : Integer;
var s_loc : String;
begin;

end;

function £(s : String , c : Classl): Boolean;

endTransformation;

Figure 2

An elementary unit of L0 transformation program is a command (an imperative statement).

Before going to detailed description of individual commands, it should be noted that name of the meta-model element(i.e. class name, role name, attribute name, enumeration name and enumeration literal name) can be specified in two different ways in L0:

· as a string literal. For example, addObj x : Person; .

· as a string variable. For example, addObj x : (s); . In this case meta-model element name will be equal to the value of the corresponding String variable at the command execution time.

L0 contains the following kinds of commands:

1. transformation <transformationName>; This command starts a transformation definition.
2. endTransformation; The command, which ends transformation definition.
3. pointer <pointerName> : <className>; Defines pointer to class <className> objects.
3.1. pointer <pointerName> : Void ; Void pointer can point to arbitrary class objects.
4. var <varName> : <ElementaryTypeName>; Defines variable of elementary type. <ElementaryTypeName> is Boolean, Integer, Real, String.
5. procedure <procName>(<formalPrmList>); Formal parameter list consists of formal parameter definitions separated by “,”. A parameter definition consists of its name, the parameter type (the type can be an elementary type, a class from the meta-model or reserved word Void), and the passing method (parameters can be passed by reference or by value). If the parameter is passed by reference, its type name is preceded by the & character.

6. function <funcName>(< formalPrmList >):<returnTypeName>; Return type name can be an elementary type name, class name or reserved word Void.

7. begin; Starts subprogram definition.
8. end; Ends subprogram definition.
9. return; Returns execution control to caller.
10. return <identifier>; Return <identifier> value to caller. <identifier> type must coincide function return type. <identifier> is elementary variable name or pointer name. Instead of <identifier> reserved word null can be used, in this case function return type must be class or Void.
11. call <subProgName>(<actualPrmList>); Actual parameters list can be empty. Actual parameter list consists of <binExpr> separated by “,”. More on <binExpr> can be found in item 24.
12. first <pointerName> : <className> else <labelName>; Positions <pointerName> to arbitrary [the first object (ordering is implementation dependent)] object of <className>. (Typically, this command in combination with next command is used to traverse all given class objects.)
If <className> does not have objects, <pointerName> becomes null, and execution control is transferred to <labelName>. If <className> does not have objects, <pointer> becomes null, and execution control is transferred to the <label>. <className> in this command must be the same as or a subclass of the class used in pointer definition, if it is a subclass, then the pointer value set is narrowed (for the following executions of next).
12.1. first <pointerName> : (<stringVarClassName>) else <labelName>;

13. first <pointerName>1: <className> from <pointerName>2 by <roleName> else <labelName>; Positions <pointerName>1 to arbitrary [the first(object ordering is implementation dependent)] object, which is reachable from <pointerName>2 by link <roleName>. (Typically, this command in combination with next command is used to traverse all objects, which are connected to a given object by link with a specified type.) If there are no such objects, <pointerName>1 becomes null, and execution control is transferred to <labelName>. It should be noted that this command specifies (narrows) pointer value set, which is taken into account during next execution and assignment performing. After this command execution pointer value set is narrowed to those objects, which are reachable from <pointerName>2 by links, with a given type (which is specified by <roleName>).
13.1. first <pointerName>1 : (<stringVarClassName>) from <pointerName>2 by (<stringVarRoleName>) else <labelName>;

14. next <pointerName> else <labelName>; Gets next object, which satisfies conditions, formulated during execution of first and which has not been visited(iterated) with this variable yet. If there is no such object, <pointerName> becomes null, and execution control is transferred to <labelName>.
15. goto <labelName>; Unconditionally transfers control to <labelName>. <labelName> should be located in the current subprogram definition
16. label <labelName>; Defines label with a given name.
17. addObj <pointerName>:<className>; Creates new object of class <className>.
17.1. addObj <pointerName>:(<stringVarClassName>);

18. addLink <pointerName>.<roleName>.<pointerName>; Creates new link (of type, which is specified by <roleName>) between objects which are pointed to by <pointerName>1 and <pointerName>2 , respectively.
18.1. addLink <pointerName>.(<stringVarRoleName>).<pointerName>;

19. addLink <pointerName>.<roleName>.<pointerName> after <pointerName>; Similar to the previous command, this command is used for {ordered} association ends.

19.1. addLink <pointerName>.(<stringVarRoleName>).<pointerName> after <pointerName>;

20. deleteObj <pointerName>; Deletes object, which is pointed to by <pointerName>.
21. deleteLink <pointerName>1.<roleName>.<pointerName>2; Deletes link, whose type is specified by <roleName>, between objects which are pointed to by <pointerName>1 <pointerName>2, respectively.
21.1. deleteLink <pointerName>1.(<stringVarRoleName>).<pointerName>2;

22. setPointer <pointerName>1=<pointerName>2; Sets <pointerName>1 to object, which is pointed to by <pointerName>2. If <pointerName>1 value set does not contain object, which is pointed to by <pointerName>2, then <pointerName>1 is set to null. In place of <pointerName>2 null can be used. In this case <pointerName>2 will not point to any object (it will point to null).

23. setPointerF <pointerName>=<funcName>(<actualPrmList>); Sets <pointerName>1 to object, which is returned by <funcName>.
24. setVar <varName> = <binExpr>; <binExpr> is a binary expression consisting of the folowing elements: elementary variables, subprogram parameters, literals, attribute values (<pointerName>.<attrName>) and standard operators(+,-,*,/,&&,||,!) of elementary types. Besides the traditional way (i.e. <pointerName>.<attrName>) to get/set object atribute value now there is a special way to do it: <pointerName>.(< stringVarAttrName >). This operation result type is String. For example, setVar <varName> = <pointerName>.(<stringVarAttrName>). Here we store the attribute value represented as a string in <varName>.

25. setVarF <identifier>=<funcName>(<actualPrmList>); This command can be used to obtain function result value of elementary type. Identifier is a name of variable. Variable type must coincide with function return type.
26. setAttr <pointerName>.<attrName>=<binExpr>; Sets objects, which is pointed to by <varName>, attribute <attrName> value to <binExpr> value.
26.1. setAttr <pointerName>.(<stringVarAttrName>) = <stringExpr>;
27. type <pointerName> == <className> else <labelName>; If the type of the object is identical to the <className>, then control is transferred to the next command, else control is transferred to <labelName>. In place of equality symbol == inequality symbol != can be used. Inheritance is no taken into account(ie this command works as oclIsTypeOf It means that comparison result will be true, if and only if, types are identical.).

27.1. type <pointerName> == (<stringVarClassName>) else <labelName>;

28. var <varName>==<binExpr> else <labelName>; If condition is not true then control is transferred to <labelName>. In place of equality symbol others (<, <=, >, >=, !=) relational operators compatible with argument types can be used.
29. attr <pointerName>.<attrName> == <binExpr> else <labelName>; If condition is not true then control is transferred to <labelName>. In place of equality symbol others (<, <=, >, >=, !=) relational operators compatible with argument types can be used.
30. link <pointerName>.<roleName>.<pointerName> else <labelName>; Checks whether there is link(which type is specified by <roleName>) between objects which are pointed to by <pointerName>1 and <pointerName>2, respectively. If condition is not true, then control is transferred to <labelName>.
30.1. link <pointerName>.(<stringVarRoleName>).<pointerName> else <labelName>;

31. noLink <pointerName>.<roleName>.<pointerName> else <labelName>; Checks whether there is no link(which type is specified by <roleName>) between objects which are pointed to by <pointerName>1 and <pointerName>2, respectively. If condition is not true, then control is transferred to <labelName>.
31.1. noLink <pointerName>.(<stringVarRoleName>).<pointerName> else <labelName>;

32. pointer <pointerName>1==<pointerName>2 else <labelName>; Checks whether objects, which are pointed to by <pointerName>1 and <pointerName>2, respectively, are(are not) identical. In place of == inequality symbol != can be used. If condition is not true then control is transferred to <labelName>. Instead of <pointer2> null can be used.
Meta-model building.

This part of language definition describes commands for dynamic meta-model building.

1. addClass <className>;

Dynamically creates class with a specified name. If class with specified name already exists issues a warning message.

1.1. addClass (<stringVarClassName>);

2. addAttr <className>.<attrName>:<ElementaryTypeName>;

Dynamically creates attribute, belonging to the specified class, with a specified name and type. If attribute with specified properties already exists issues a warning message.
2.1. addAttr (<stringVarClassName>).(<stringVarAttrName>):(<stringVarElemTypeName>);
3. addAssoc <className>.{ordered}<card><roleName>/<roleName><card>{ordered}.<className>;

Dynamically creates association with specified properties. If association with specified properties already exists issues a warning message.
3.1. addAssoc (<strVarClassName>).{ordered}<card>(<strVarRoleName>)/(<strVarRoleName>)<card>{ordered}.(<strVarClassName>);
4. addCompos <compositeClassName>.{ordered}<card><roleName>/<roleName><card>{ordered}.<partClassName>;

Dynamically creates composition with specified properties. If composition with specified properties already exists issues a warning message.
4.1. addCompos (<strVarClassName>).{ordered}<card>(<strVarRoleName>)/(<strVarRoleName>)<card>{ordered}.(<strVarClassName>);
5. addRel <subClassName>.subClassOf.<superClassName>;

Dynamically creates generalization relation between specified classes. If generalization relation between these classes already exists issues a warning message.
5.1. addRel (<strVarSubClassName>).subClassOf. (<strVarSuperClassName>);

6. deleteClass <className>;

Deletes class with a specified name.
6.1. deleteClass (<strVarClassName>);
7. deleteAttr <className>.<attrName>;

Deletes attribute with given properties.
7.1. deleteAttr (<strVarClassName>).(<strVarAttrName>);
8. deleteAssoc <className>.<roleName>.<className>;

Deletes association with a given role name between given classes.
8.1. deleteAssoc (<strVarClassName>).(<strVarRoleName>).(<strVarClassName>);
9. deleteRel <subClassName>.subClassOf.<superClassName>;

Deletes generalization relation between specified classes

9.1. deleteRel (<strVarSubClassName>).subClassOf. (<strVarSuperClassName>);

10. addEnum <enumName>:{ <enumElem1>, <enumElem2>, … };

Dynamicaly creates enumeration with specified name and specified enumeration literals.

10.1. addEnum (<strVarEnumName>):{sarkans,(strVarEnumElemName),…};
11. deleteEnum <enumName>;

Deletes enumeration with a specified name.

11.1. deleteEnum (<strVarEnumName >);

12. addEnumElem <enumElemName> to <enumName>;

Adds enumeration literal to enumeration.
12.1. addEnumElem (<strVarEnumElemNameIn>) to (<strVarEnumNameIn>);

13. deleteEnumElem <enumElemName> from <enumName>;

Removes enumeration literal form enumeration.
13.1. deleteEnumElem (<strVarEnumElemNameIn>) from (<strVarEnumNameIn>);

Meta-model elements scanning.

This part of language definition describes commands for meta-model element scanning.

1. firstClass <strVarClassNameOut> else <labName>; Stores the name of the first class (ordering is implementation dependent) in the <strVarClassNameOut>. If there are no classes, then <strVarClassNameOut> value is not changed and execution control is transferred to <labName>; Typically, this command in combination with the nextClass command is used to iterate through all class names.
2. nextClass <strVarClassNameOut> else <labName>; Stores the name of the next class which has not been visited (iterated) yet in <strVarClassNameOut>. If there is no such class, <strVarClassNameOut> value is not changed and execution control is transferred to <labName>.
3. firstAssoc <className>.<strVarRoleNameOut>/<strVarInverseRoleNameOut>.<strVarClassNameOut> else <labName>; Stores the role name, inverse role name, and target class name of the first association (ordering is implementation dependent) starting from <className> in <strVarRoleNameOut>, <strVarInverseRoleNameOut> and <strVarClassNameOut>, respectively. If there are no associations strating from <className>, then <strVarRoleNameOut>, <strVarInverseRoleNameOut> and <strVarClassNameOut> values are not changed and execution control is transferred to <labName>; Typically, this command in combination with the nextAssoc command is used to iterate through all associations starting from a given class(or this class ancestors).
3.1. firstAssoc (<strVarClassNameIn>).<strVarRoleNameOut>/<strVarInverseRoleNameOut>.<strVarClassNameOut> else <labName>;
4. firstAssocDirect <className>.<strVarRoleNameOut>/<strVarInverseRoleNameOut>.<strVarClassNameOut> else <labName>; This command is similar to the previous one, the difference is that it does take into account only those associations which are defined exactly for this class and ignores associations which are defined in ancestor classes.
4.1. firstAssocDirect (<strVarClassNameIn>).<strVarRoleNameOut>/<strVarInverseRoleNameOut>.<strVarClassNameOut> else <labName>;
5. nextAssoc <className>.<strVarRoleNameOut>/<strVarInverseRoleNameOut>.<strVarClassNameOut> else <labName>; Stores the role name, inverse role name and target class name of the next association starting from <className>, which has not been visited (iterated) yet, in <strVarRoleNameOut>, <strVarInverseRoleNameOut> and <strVarClassNameOut>, respectively. If there is no such association, <strVarRoleNameOut>, <strVarInverseRoleNameOut>, <strVarClassNameOut> values are not changed and execution control is transferred to <labName>.
5.1. nextAssoc (<strVarClassNameIn>).<strVarRoleNameOut>/<strVarInverseRoleNameOut>.<strVarClassNameOut> else <labName>;
6. nextAssocDirect <className>.<strVarRoleNameOut>/<strVarInverseRoleNameOut>.<strVarClassNameOut> else <labName>; Similar to the previous one but associations from ancestors are ignored.
6.1. nextAssocDirect (<strVarClassNameIn>).<strVarRoleNameOut>/<strVarInverseRoleNameOut>.<strVarClassNameOut> else <labName>;
7. firstAttr <className>.<strVarAttrNameOut>.<strVarAttrTypeNameOut > else <labName>; Stores name and type name of the first attribute (ordering is implementation dependent) of <className> in <strVarAttrNameOut>, <strVarAttrTypeNameOut >, respectively. If <className> has no attributes, then <strVarAttrNameOut>, <strVarAttrTypeNameOut > values are not changed and execution control is transferred to <labName>; Typically, this command in combination with the nextAttr command is used to iterate through all this class attributes(including ancestor attributes).
7.1. firstAttr (<strVarClassNameIn>).<strVarAttrNameOut>.<strVarAttrTypeNameOut> else <labName>;
8. firstAttrDirect <className>.<strVarAttrNameOut>.<strVarAttrTypeNameOut > else <labName>; This command is similar to the previous one, the difference is that it does take into account only those attributes which are defined exactly in this class and ignores attributes which are defined in ancestor classes.

8.1. firstAttrDirect (<strVarClassNameIn>).<strVarAttrNameOut>.<strVarAttrTypeNameOut> else <labName>;
9. nextAttr <className>.<strVarAttrNameOut>.<strVarAttrTypeNameOut > else <labName>; Stores name and type name of the next attribute of <className>, which has not been visited (iterated) yet, in <strVarClassNameOut> and < strVarAttrTypeNameOut >, respectively. If there is no such attribute, <strVarClassNameOut> <strVarAttrTypeNameOut > values are not changed and execution control is transferred to <labName>.
9.1. nextAttr (<strVarClassNameIn>).<strVarAttrNameOut>.<strVarAttrTypeNameOut> else <labName>;

10. nextAttrDirect <className>.<strVarAttrNameOut>.< strVarAttrTypeNameOut > else <labName>; Similar to the previous one the difference is that it does take into account only those attributes which are defined exactly in this class and ignores attributes which are defined in ancestor classes.
10.1. nextAttrDirect (<strVarClassNameIn>).<strVarAttrNameOut>.<strVarAttrTypeNameOut> else <labName>;

11. firstSubClass <superClassName>.<strVarSubClassNameOut> else <labName>; Stores the name of the first subclass (ordering is implementation dependent) in the <strVarSubClassNameOut>. If there are no subclasses, then <strVarSubClassNameOut> value is not changed and execution control is transferred to <labName>; Typically, this command in combination with the nextSubClass command is used to iterate through all subclass names.
11.1. firstSubClass (<strVarSuperClassNameIn>).<strVarSubClassNameOut> else <labName>;
12. nextSubClass <superClassName>.<strVarSubClassNameOut> else <labName>; Stores the name of the next subclass of <className>, which has not been visited (iterated) yet, in <strVarSubClassNameOut>. If there is no such class, <strVarSubClassNameOut> value is not changed and execution control is transferred to <labName>.
12.1. nextSubClass (<strVarSuperClassNameIn>).<strVarSubClassNameOut> else <labName>;

13. firstEnum <strVarEnumNameOut> else <labName>; Stores the name of the first enumeration (ordering is implementation dependent) in the <strVarEnumNameOut>. If there are no enumerations, then <strVarEnumNameOut> value is not changed and execution control is transferred to <labName>; Typically, this command in combination with the nextEnum command is used to iterate through all enumeration names.
14. nextEnum <strVarEnumNameOut> else <labName>; Stores the name of the next enumeration which has not been visited (iterated) yet in <strVarEnumNameOut>. If there is no such enumeration, <strVarEnumNameOut> value is not changed and execution control is transferred to <labName>.
15. firstEnumElem <enumName>.<strVarEnumElemNameOut> else <labName>; Stores the name of the first <enumName> enumeration literal (ordering is implementation dependent) in the <strVarEnumElemNameOut>. If there are no enumeration literals in <enumName>, then <strVarEnumElemNameOut> value is not changed and execution control is transferred to <labName>; Typically, this command in combination with the nextEnumElem command is used to iterate through all given enumeration enumeration literals names.
15.1. firstEnumElem (<strVarEnumNameIn>).(<strVarEnumElemNameOut>) else <labName>;

16. nextEnumElem <enumName>.<strVarEnumElemNameOut> else <labName>; Stores the name of the next <enumName> enumeration literal, which has not been visited (iterated) yet in <strVarEnumElemNameOut>. If there is no such enumeration literal, <strVarEnumNameOut> value is not changed and execution control is transferred to <labName>.
16.1. nextEnumElem (<strVarEnumNameIn>).(<strVarEnumElemNameOut>) else <labName>;

17. existsClass <className> else <labName>; If class with a specified name exists execution control is transferred to the next command, otherwise execution control is passed to <labName>.
17.1. existsClass (<strVarClassNameIn>) else <labName>;

18. existsEnum <enumName> else <label>; If enumeration with a specified name exists execution control is transferred to the next command, otherwise execution control is passed to <labName>.
18.1. existsEnum (<strVarEnumNameIn>) else <labName>;

19. existsEnumElem <enumName>.<enumElemName> else <label>; If enumeration with a specified name have enumeration literal with a specified name execution control is transferred to the next command, otherwise execution control is passed to <labName>.
19.1. existsEnumElem (<strVarEnumNameIn>).(<strVarEnumElemNameIn>) else <labName>;

20. existsAttr <className>.<attrName>.<typeName> else <labName>; If attribute with specified properties exists execution control is transferred to the next command, otherwise execution control is transferred to <labName>.
20.1. existsAttr (<strVarClassNameIn>).(<strVarAttrNameIn>).(<strVarAttrTypeNameIn>) else <labName>;

21. existsAssoc <className>.<roleName>.<className> else <label>; If association with specified properties exists execution control is transferred to the next command, otherwise execution control is transferred to <labName>.
21.1. existsAssoc (<strVarClassNameIn>).(<strVarRoleNameIn>).(<strVarClassNameIn>) else <labName>;

22. existsCompos <className>.<roleName>.<className> else <label>; If composition with specified properties exists execution control is transferred to the next command, otherwise execution control is transferred to <labName>.
22.1. existsCompos (<strVarClassNameIn>).(<strVarRoleNameIn>).(<strVarClassNameIn>) else <labName>;

23. existsRel <subClassName>.subClassOf.<superClassName> else <label>; If there is generalisation relationship between specified classes execution control is transferred to the next command, otherwise execution control is transferred to <labName>.
23.1. existsRel (<strVarSubClassNameIn>).subClassOf. (<strVarSuperClassNameIn>) else <labName>;

L0 plus built-in functions.

Type conversion functions.

IsInt (str : String) : Boolean;

IsReal(str : String) : Boolean;

IsBool(str : String) : Boolean;

StrToInt(str : String) : Integer;

StrToBool(str : String) : Bool;

StrToReal(str : String) : Real;

IntToStr (i : Integer) : String;

BoolToStr (b : Bool) : String;

RealToStr (r : Real) : String;

String processing functions.

Size(str : String) : Integer;

Char(str : String , charIndex : Integer) : String;

Substring(str : String , substringStartIndex : Integer , substringEndIndex : Integer) : String;

This command ends a transformation definition.

Command used to specify supplementary L0 unit to be used.

This command ends a metamodel definition.

This command starts metamodel definition.

Commands used to define a metamodel.

Subprogram header .

Subprogram body definition (ordered sequence of L0 commands).

Subprogram local variable definitions.

Global variable definition part.

Command used to specify the external library to be used.

Command used to include the external library header.

Defines a meta-model, which models are to be transformed.

This command starts a transformation definition.

PAGE
2

